

Digital Empowerment of Vocational Education: Opportunities, Challenges and Strategies

Jiamei Sun, Hepeng Wang*, Xiuling Wang, Xueyao Zhang

Changchun Technical University of Automobile, Changchun ,Jilin 130000

Abstract: Digital technology is reshaping the industrial landscape, and the digital transformation of vocational education presents both opportunities and challenges. Opportunities lie in achieving resource sharing, innovating teaching methods, and promoting personalized education. Challenges focus on the difficulty of matching talent training with the needs of intelligent manufacturing, the exacerbation of the Matthew effect in educational resources, and the disconnect between teaching content and enterprise requirements. This article proposes four major strategies: improving the digital system and mechanisms, narrowing the digital divide, deepening the integration of digital technology with teaching, and strengthening international cooperation, providing a reference for the digital transformation of vocational education and helping to align it with industry needs.

Keywords: digital technology; opportunities; challenges; strategies

DOI:10.12417/3029-2328.25.10.025

1.Introduction

In today's world, digital technology is profoundly reshaping various industries. Vocational education, as a core link in cultivating technical and skilled talents, is also facing opportunities and challenges brought by digital transformation [1]. This transformation is not only a matter of technological iteration but also a comprehensive change in educational concepts, teaching models, and evaluation systems. With the help of technologies such as big data, cloud computing, the Internet of Things, and artificial intelligence, vocational education can create a fully immersive, perceptive, and intelligent digital environment [2]. This not only optimizes teaching methods and enhances effectiveness but also drives innovation in educational philosophy and talent cultivation by addressing the fundamental questions of "what kind of people to train, how to train them, and for whom to train them," thereby achieving self-upgrade. At the same time, digitalization brings new opportunities to vocational education. High-quality resources can be integrated and shared through digital platforms, benefiting more students. Innovative teaching models, such as online education and virtual laboratories, can stimulate students' interest. Data analysis can also help accurately understand students' needs and provide personalized teaching solutions.

However, the path of digital empowerment is not smooth. Vocational colleges need to address challenges such as updating technical equipment, improving network infrastructure, enhancing the digital capabilities of faculty, and ensuring cybersecurity. Differences in digital infrastructure levels across regions and schools exacerbate the uneven distribution of educational resources and widen the digital divide. How to formulate scientific strategies, leverage digital advantages, and tackle challenges to achieve sustainable development in vocational education has become an important issue. This article will explore related opportunities, analyze challenges, and propose coping strategies to provide a reference for the digital transformation of vocational education.

2. Current Challenges and Potential Opportunities

2.1 Changes in population structure

The global manufacturing industry is undergoing a profound transformation from scale expansion to value enhancement. The revolution in production methods centered on intelligent manufacturing is exerting a significant impact on the labor market, driving the shift in population demand from quantity dividends to quality dividends, while also facing challenges in the transformation [3]. On one hand, the continuous rise in labor costs is forcing an upgrade in skill structures. Intelligent manufacturing has created a demand for digitally versatile talents, requiring practitioners to possess interdisciplinary skills such as mechanical principles, programming control, and data analysis.

On the other hand, as global industrial competition enters a new stage centered on innovation density, vocational colleges find themselves in a contradictory situation of standardized skill surplus coexisting with a deficit in innovative literacy. In mechanical engineering majors, standardized operational courses account for a relatively high proportion, while innovative courses involving system design, fault diagnosis, and the like are noticeably insufficient. More critically, many practical training projects use fixed parameters, allowing students to score simply by following the assembly instructions. Even when new methods such as Project-Based Learning (PBL) are introduced, teachers often break the tasks into multiple standardized steps, requiring students only to follow the process in a fill-in-the-blank manner. This constitutes pseudo-innovative education.

2.2 Unequal distribution of educational resources

In the context of technology-enabled education, the uneven distribution of educational resources is exacerbating the Matthew effect. On one hand, the allocation of regional resources is severely imbalanced, with a stark gap in hardware configuration. Universities in developed regions have already established digital twin factories covering the entire process from design to simulation to debugging, while certain vocational schools in underdeveloped areas still use CA6140 ordinary lathes purchased in 2005 for their CNC programs. This generational gap in equipment directly results in a century-long gap in skills development—when students in developed regions are training industrial robot deep learning algorithms, students in underdeveloped regions are still memorizing G-code programming manuals. In addition, there is a locational imbalance in industry-education integration. Vocational schools in eastern regions have set up digital training bases with enterprises, whereas provinces in the west face much larger gaps. On the other hand, there is a structural shortage of teachers. Teachers in remote areas have weak digital teaching capabilities. In vocational colleges, teachers mainly rely on blackboards and PPTs for instruction, and some instructors in mechanical-related fields even believe that being able to use CAD software means they understand digital teaching, having no knowledge of intelligent teaching tools such as virtual simulation or digital twins. Meanwhile, Beijing Institute of Technology launched its first 'Metaverse' admission letter in 2023 and created a 3D virtual campus including the Yan'an and Liangxiang campuses, providing students with an immersive visiting experience. While top universities have entered the Metaverse era, vocational education in remote areas is still struggling in the digital enlightenment stage.

2.3 Vocational education is out of touch with market demand

Currently, vocational education is seriously lagging behind industrial changes in both professional program offerings and teaching content. The update cycle for program catalogs lasts up to five years, which is much slower than technological iterations, resulting in a 'time-space rift' between talent cultivation and enterprise demand. Companies have already applied offline simulation and digital twins, yet classrooms still focus mainly on teaching and learning programming; the development of battery management systems (BMS) for new energy vehicles urgently requires interdisciplinary talent in electrochemistry and big data, but vocational schools still rely on single automotive testing programs. Teaching content is also disconnected from job requirements, and school-enterprise cooperation is mostly limited to on-the-job internships, with real production data rarely entering the classroom due to confidentiality issues. Textbook updates are slow and cannot keep pace with technological upgrades. To participate in global industrial competition, China's vocational education must break the rigid constraints of program catalogs and establish new mechanisms for detecting industry needs, rapidly reorganizing courses, and dynamically certifying capabilities.

3. Corresponding Breakthrough and Action Strategies

3.1 Improve the system and mechanisms for digital vocational education

The institutional mechanism serves as the top-level framework for the digital reform of vocational education and requires coordinated efforts in policy, standards, and monitoring ^[4,5]. In terms of improving the policy system, a 'Special Plan for the Digital Development of Vocational Education' should be issued to clarify the proportion of

special provincial and municipal financial investments in vocational education digitalization. The effectiveness of digital construction should be incorporated into the core indicators for evaluating vocational schools, and a support mechanism for jointly applying for digital projects by schools and enterprises should be established. Enterprises participating in the development of teaching materials in fields such as industrial robotics and intelligent control should be granted tax reductions.

Building a standardized system is key to preventing digital construction efforts from operating independently. It is necessary to work with industry associations to develop the 'Digital Teaching Standards for Vocational Education,' standardizing the data formats of professional teaching resources and the technical interfaces of training platforms. For example, it could be stipulated that digital courseware for the intelligent manufacturing specialty must include a 3D virtual simulation operation module to ensure that resources from different schools and enterprises can be interoperable and shared.

Establishing a quality monitoring system requires leveraging big data for dynamic supervision, building a national digital quality monitoring platform for vocational education, and collecting real-time data on the coverage of digital courses, the usage rate of digital tools by teachers and students, and the compliance rate of practical training projects in institutions. For institutions that fail to meet the standards for six consecutive months, special supervision will be initiated to compel the implementation and effectiveness of digital reforms.

3.2 Narrow the digital divide in vocational education

The existence of the digital divide can exacerbate the uneven distribution of educational resources, requiring simultaneous breakthroughs in both hardware and software. In terms of strengthening infrastructure construction, resources should be primarily directed to remote areas, promoting the digitalization of vocational education in rural areas, equipping county-level vocational colleges with industrial-grade virtual simulation equipment, and building cloud-based training classrooms through 5G private networks, enabling students in remote areas to remotely operate intelligent manufacturing production lines in first-tier cities. At the same time, vocational education internet plans should be introduced in collaboration with telecommunications companies to reduce the cost for teachers and students to access online resources.

Improving the digital literacy of teachers and students is key to narrowing the gap and requires the establishment of a tiered and categorized training system. For teachers, implement a '1+X' digital skills certification training, incorporating modules such as AI teaching applications and virtual training development into the compulsory curriculum, with a requirement of at least 40 hours of hands-on practice per academic year. For students, offer general digital skills courses to cultivate foundational abilities in data analysis and intelligent device operation from the first year, while also motivating learning through digital skills competitions, such as industrial robot programming and digital workshop design contests.

3.3 Using digital technology to improve the quality of vocational education

Digital technology is the core engine for improving the quality of vocational education and needs to be deeply integrated into the entire teaching process. In terms of optimizing program offerings, relying on industry big data to analyze changes in job demand, a dynamic adjustment mechanism for programs should be established. For example, when the demand for new energy vehicle maintenance positions in a certain region increases by 30% annually, institutions need to complete the reconstruction of the relevant curriculum system within six months, adding courses such as battery management systems and intelligent driving assistance maintenance.

Strengthening practical teaching requires breaking through the limitations of traditional training and establishing integrated virtual-real training bases. By using digital twin technology to replicate real factory scenarios, students can repeatedly practice high-risk or high-cost tasks, such as troubleshooting industrial robots or debugging intelligent production lines, in a virtual environment. When combined with hands-on operation on actual equipment, this approach creates a closed-loop training process where skills are honed through virtual simulation and results are

verified in real-world settings.

The optimization and sharing of educational resources requires the establishment of a national-level vocational education resource repository, integrating high-quality digital courses, practical training cases, and enterprise projects from across the country, and implementing a co-construction and sharing mechanism—institutions can upload special resources to earn points, which can then be exchanged for high-quality content from other institutions, while also involving technical experts from enterprises in the updating of resources to ensure that the repository's content keeps pace with industry technology iteration.

3.4 Strengthen international cooperation and exchange

International cooperation is an important complement to the digital development of vocational education and needs to benchmark against advanced global experiences ^[6]. On one hand, we should actively introduce external expertise by establishing partnerships with institutions such as Germany's dual system schools and Singapore Polytechnic, adopting their mature models like modular curriculum design and PBL, and translating and locally adapting digital teaching resources—for example, integrating Germany's Industry 4.0 virtual training modules into China's smart manufacturing courses. On the other hand, we should proactively reach out by organizing overseas study programs for vocational college teachers to learn digital teaching and management experiences, while promoting the alignment of China's vocational education digital standards with countries along the Belt and Road, exporting high-quality resources such as virtual training platforms and online courses, thereby enhancing the digital level of our vocational education through international cooperation.

4.Conclusion

This article reviews the opportunities, challenges, and strategies of digital technology empowering vocational education, and draws key conclusions. Digitalization is a crucial pathway for vocational education to adapt to industrial upgrading, but it is constrained by multiple challenges. The transformation faces three major systemic difficulties: talent cultivation, resource allocation, and supply-demand matching. Four major strategies form a framework for breaking the deadlock. In the future, vocational education needs to promote the upgrade of digitalization from tool application to ecosystem reconstruction, achieving a transformation from quantity-driven benefits to quality-driven benefits, and supplying industries with appropriately skilled talent.

Acknowledgement

Research Project of the Higher Education Society of Jilin Province, China, JGJX24C165; Science and Technology Research Project of Education Department of Jilin Province, China, JJKH20241761KJ.

References:

- [1] Alenezi M, Wardat S, Akour M. The need of integrating digital education in higher education: Challenges and opportunities [J]. Sustainability, 2023, 15(6):4782.
- [2] Trevisan L V, Eustachio J H P P, Dias B G, et al. Digital transformation towards sustainability in higher education: state-of-the-art and future research insights [J]. Environment, Development and Sustainability, 2023:1.
- [3] Cao Yan, Tan Jialu. The Implications, Mechanisms and Strategies of Coupling New Quality Production Forces in the Digital Age with Higher Vocational Education [J]. Forum on Contemporary Education, 2024, (05):41-48.
- [4] Lu Moxing. The Realistic Foundation, Action Framework and Implementation Path of Digital Transformation in Vocational Education [J]. Chinese Vocational and Technical Education, 2024, (18):31-39. D
- [5] Feng Dong. Three Mechanisms for the High-Quality Development of Vocational Undergraduate Universities[J]. Forum on Contemporary Education, 2024, (04):1-9.
- [6] Li Qing,Liu Yong.Design of the Standard System for Educational Virtual Digital Humans and Its Path Planning [J].Modern Educational Technology,2024,34(07):70-80.