

Construction Models and Practical Exploration of Digital-Intelligence Finance Internship and Training Bases Based on Industry-Education Integration

Xiao Zhang

Hainan Vocational University of Science and Technology, Haikou, Hainan Province 571126

Abstract: Driven by the digital economy and industrial upgrading, digital-intelligence finance has become the core development direction of the modern finance sector, and industry-education integration is the key pathway to cultivating digital-intelligence finance talents that meet the industry demand. This paper focuses on the construction of digital-intelligence finance internship and training bases, constructs a "three-dimensional nine-pillar" construction model by analyzing the problems faced by current finance internship and training bases in their digital and intelligent transformation, such as inadequate collaboration, lagging in content, and monolithic assessment methods, and explores the practical pathways for a school-enterprise collaborative education mechanism, a digital-intelligence finance internship content framework, and a dynamic assessment and guarantee mechanism from three dimensions: muti-subject collaboration, content structure, and assessment guarantee. Research shows that defining the boundaries of authority and responsibility between schools and enterprises, reconstructing the internship content modules, and establishing a multi-dimensional assessment system, the internship and training bases can effectively improve the cultivation quality of digital-intelligence finance talents, achieve deep integration of the education chain, talent chain with the industrial chain and innovation chain, and provide a practical paradigm for the construction of similar internship and training bases.

Keywords: Industry-Education Integration; Digital-Intelligence Finance Internship and Training Bases; Talent Cultivation; Collaborative Education

DOI:10.12417/3029-2328.25.10.002

1.Introduction

With the deep integ ration of digital technologies, such as big data, artificial intelligence and blockchain, with the finance sector, digital-intelligence financial business formats, such as financial sharing, intelligent risk control and digital auditing, are constantly emerging. Industry demand is becoming increasingly urgent for financial talents' ability to use digital-intelligence technology. As an important link between higher education and industry practice, the construction quality of internship and training bases directly affects the effectiveness of cultivating talents in digital-intelligence finance. However, conventional finance internship and training bases generally have problems such as "emphasizing forms over substance" and "emphasizing visits over practical operation". Against the backdrop of digital and intelligent transformation, they are even more confronted with inefficient school-enterprise collaborative mechanisms, divorce between internship content and industry demand, and shortage of digital and intelligent resources for practice, and other challenges [1]. Against this backdrop, it has become an important issue jointly faced by universities and enterprises how to take industry-education integration as the core and build construction models for internship and training bases that meet the development needs of digital-intelligence finance.

2.The Practical Dilemmas of Building Digital-Intelligence Finance Internship and Training Bases from the Perspective of Industry-Education Integration

2.1 The School-Enterprise Collaborative Mechanisms Have Become a Mere Formality, and the Boundaries Have Become Obscure Between Authority and Responsibility

The core of industry-education integration lies in the deep cooperation between schools and enterprises based

Foundation Item: The Supply and Demand Matching Employment Education Project of Ministry of Education of the People's Republic of China: "Construction of Digital-Intelligence Finance Internship and Training Bases Based on Industry-Education Integration (No. 2023122847124)".

on the principle of "benefit and risk sharing". However, at present, most digital-intelligence finance internship and training bases are still confined to shallow cooperation that "enterprises provide venues, and colleges and universities deploy students". On the one hand, due to the fact that financial business involves core data and secret technology, enterprises are often reluctant to open key business modules to interns and only arrange for them to do basic repetitive tasks, such as data entry and collating payment vouchers, which makes it difficult for students to get in touch with the core processes of digital intelligence. On the other hand, colleges and universities are lack of initiative to proactively align with enterprise demand. In the design of internship programs, they still follow the conventional finance internship framework, fail to incorporate digital-intelligence skills training into the core objectives, and provide inadequate monitoring and guidance during the internship process, making it difficult to coordinate with enterprises to solve practical problems during internship process.

2.2 Lagging in Internship Content Framework Leads to That It Is Disconnected from the Needs of Digital-Intelligence Finance

The development of digital-intelligence finance has driven the job requirements to shift from "accounting type" to "digital-intelligence analysis type", which require that talents have the ability in data processing, model construction, application of intelligent tools, etc. However, the content framework is still outdated obviously in current internship and training bases [2]. Firstly, the internship content still mainly focuses on conventional financial business, such as manual bookkeeping and report preparation. It involves relatively little core content, such as the intelligent accounting processes in the financial shared service centers, the digital-intelligence modules in the ERP systems, and the application of big data risk control models, which leads to that students are still unable to meet the job requirements of digital-intelligence finance after the internship. Secondly, the internship content is not systematic and progressive, mostly presented in the form of "fragmented" tasks, and has not formed an ability training chain from "basic operation-digital intelligence analysis-comprehensive application", making it difficult for students to build a complete knowledge framework of digital-intelligence finance.

2.3 The Assessment and Guarantee Mechanisms Are "Monotonous" and Lack the Ability to Make Dynamic Adjustment

A scientific assessment and guarantee mechanism is the key to ensuring the construction quality of internship and training bases. However, the current Digital-intelligence finance internship and training bases have obvious shortcomings in this aspect. From the perspective of assessment dimensions, most colleges and universities still take "internship reports + enterprise reviews" as the core assessment basis, and have not incorporated the performance of digital-intelligence skills into their assessment systems. For instance, effective assessment is not given to students' ability to use data tools, such as Python and SQL, their proficiency in operating intelligent financial systems, and their analytical ability for digital-intelligence business. This leads to that the assessment results are unable to truly reflect the students' digital intelligence practical ability. From the perspective of the guarantee mechanisms, on the one hand, most enterprise mentors are front-line business personnel, and lack systematic instructional competence. Moreover, due to their busy work schedules, they are unable to devote sufficient time to guiding interns, resulting in uneven quality of internship guidance. On the other hand, colleges and universities and enterprises have not established a dynamic feedback mechanism for internship quality. There is a lack of timely adjustment channels for problems such as lagging in content and insufficient resources that occur during the internship process, which makes it difficult for the construction of internship and training bases to adapt to the rapid development of digital-intelligence finance.

3.The Construction of a "Three-Dimensional Nine-Pillar" Model for the Digital-Intelligence Finance Internship and Training Bases Based on Industry-Education Integration

3.1 The Dimension of Multi-Subject Collaboration: Building an Educational Community of "Mutualistic Symbiosis Between Schools and Enterprises"

The dimension of multi-subject collaboration focuses on solving the "formal" issue of school-enterprise cooperation. Through the three pillars of "shared authority and responsibility, resource sharing, and win-win benefits", it defines the roles and responsibility of both schools and enterprises in the construction of internship and training bases, and forms an educational community of mutualistic symbiosis and co-prosperity. Colleges and universities and enterprises can sign legally binding "Digital-Intelligence Finance Internship and Training Base Cooperation Agreements" to clearly define the authority and responsibility of both parties. Enterprises are responsible for providing digital-intelligence practice platforms (such as financial shared systems and intelligent risk control platforms), appointing business backbones with digital-intelligence experience as enterprise mentors, and opening up non-core but critical digital-intelligence business modules. Colleges and universities are responsible for making the internship training programs for talents, appointing professional teachers as school mentors, jointly designing the internship content with enterprises, and undertaking the theory training of students in the early stage as well as the follow-up guidance during the internship process. At the same time, joint administrative committees can be established between schools and enterprises to organize regular meetings to coordinate and solve problems during internships, such as insufficient digital-intelligence skills of students and inadequate guidance time by enterprise mentors.

3.2 The Dimension of Content Structure: Building a "Digital Intelligence-Oriented" Internship Content Framework

The dimension of content structure focuses on solving the issue of "lagging" in internship content, builds three pillars: "basic module-core module-comprehensive module", and forms a progressive internship content framework centering on the ability requirements of digital-intelligence finance positions. Digital Intelligence Tools and Theoretical Foundation: This module aims to help students master the basic tools and theoretical knowledge required for digital intelligence finance internship, and lay solid foundation for subsequent internships. The content includes the development tendency of the digital-intelligence finance industry, the operation of common digital intelligence tools, and an introduction to the digital-intelligence business processes of enterprises. The internships are conducted in the form of "online learning + offline training". Students complete theoretical learning through the online learning platforms provided by enterprises and conduct training on tool operations in the digital-intelligence finance laboratories in colleges and universities. School and enterprise mentors jointly conduct assessment on them. Only passing the assessment can they proceed to the next module. Digital-Intelligence Business Training: This module is the core of the internships, and aims to enable students to deeply participate in the digital-intelligence business processes of enterprises and enhance their job adaptability [3]. The content is designed around the job tasks of core digital-intelligence finance positions (such as intelligent finance specialist, big data risk control specialist, and digital audit assistant). Details are as follows: In the intelligent finance positions, students participate in the intelligent review processes in the financial shared service centers, use the intelligent finance system to handle invoice authentication, expense reimbursement and other business, and analyze the financial data generated by systems; In the positions of big data risk control, they assist enterprises in building customer credit assessment models, use big data tools to analyze customer transaction data, identify risk points and put forward suggestions for prevention and control; In the digital auditing positions, they use auditing software to conduct intelligent analysis of the financial data of enterprises, find abnormal transactions, and prepare audit working papers.

3.3 The Dimension of Assessment and Guarantee: Building a "Dynamic and Diverse" Assessment and Guarantee Mechanism

The dimension of assessment and guarantee focuses on solving the problem of "Monolithic" assessment and

guarantee mechanisms, ensures the continuous improvement of the construction quality of internship and training bases through the three pillars of "diversified assessment, dual-mentor guarantee, and dynamic feedback", and establish a three-dimensional assessment system of "student self-assessment-mutual assessment between school and enterprise mentors-person-job fit assessment" to comprehensively assess the internship effect of students. Students' self-assessment focuses on rethinking on the improvement of digital intelligence skills and the existing deficiencies. In the mutual assessment between school and enterprise mentors, enterprise mentors assess students' practical ability, professional quality and the application level of digital intelligence tools, while university mentors assess students' theoretical application ability and problem-solving ability. The person-job fit assessment is conducted by the HR department of enterprises in combination with the job requirements of digital-intelligence finance positions to assess the person-job fit of students and provide feedback for subsequent talent cultivation. The assessment indicators should highlight the digital-intelligence characteristics, such as "proficiency in operating intelligent financial systems", "accuracy of data processing", "depth of digital-intelligence business analysis", and avoid being dominated by conventional financial indicators. It is necessary to build dual-mentor teams of "university mentors + enterprise mentors" to provide quality guarantee for internship guidance. On the one hand, colleges and universities regularly organize professional teachers to participate in digital-intelligence business training in enterprises to understand the latest industry trends and job requirements, and enhance teachers' digital-intelligence instructional competence. On the other hand, enterprises select business backbones with over five years of working experience in digital-intelligence finance positions and a strong sense of responsibility to serve as enterprise mentors. Colleges and universities provide instructional theory training in education, psychology, etc. for enterprise mentors to enhance their guidance ability [4].

4.Practical Pathways for Digital-Intelligence Finance Internship and Training Bases Based on Industry-Education Integration

4.1 Preparation in Early Stage: Defining the Cooperative Targets and Resource Integration

In the early stage of the internship and training base construction, schools and enterprises need to have enough communication to define the cooperation targets and resource integration schemes. Colleges and universities need to conduct in-depth research in enterprises to understand the specific requirements of digital-intelligence finance positions, for example, whether enterprises urgently need talents with big data risk control ability or those with the ability to operate intelligent financial systems. Based on this, they can determine the key points of internship and training base construction. Enterprises need to explain to colleges and universities their pain points in digital and intelligent transformation, such as lack of talent reserves in digital intelligence and core business processes that need to be optimized, so that colleges and universities can design internship content and scientific research cooperation directions in a targeted manner. In terms of resource integration, it is necessary to clearly define the list of resources that both parties can provide, such as laboratory equipment provided by colleges and universities and digital-intelligence platforms provided by enterprises, and make detailed rules for resource sharing to avoid the problem of uneven resource distribution in subsequent cooperation.

4.2 Implementation in Mid-Term Stage: Strengthening Process Management and Collaborative Guidance

The implementation stage of internships is the key to ensuring the implementation of construction models, and it is necessary to strengthen process management and collaborative guidance. The first is to make a detailed internship program to clearly define the internship time, content, goals and assessment methods for each module, such as two weeks for the basic module, four weeks for the core module and two weeks for the comprehensive module, to ensure the smooth progress of internships. The second is to establish an internship monitoring mechanism. University mentors should visit enterprises at least twice a week to monitor students' internship progress, communicate with enterprise mentors about students' performance, and promptly solve problems encountered by students. For instance, if students encounter operation difficulties when using intelligent financial systems, university

and enterprise mentors should jointly provide special guidance. The third is to organize mid-term reports. Students are required to report on the progress of their internships, the skills they have learned, and the existing problems during the mid-term stage of their internships. School and enterprise mentors will provide feedback and suggestions to help students adjust their internship strategies and ensure the realization of their internship goals.

4.3 Summary in Late Stage: Improving Feedback and Model Optimization

After the internship, it is necessary to conduct comprehensive summary and feedback to provide basis for optimizing the construction models of internship and training Bases. The first is to organize an internship summary meeting, invite representatives from schools and enterprises and representatives of the interns to participate in to summarize the experience and shortcomings during the internship process, such as the unreasonable setting of the intelligent tax module in the internship content, which needs to be adjusted in the next internship. The second is to collect feedback from interns and enterprises, understand the interns' satisfaction with the internship content and guidance quality, enterprises' assessment on the interns' ability, and suggestions from both sides for the construction of internship and training Bases through questionnaires, interviews, and other methods. The third is to optimize the "three-dimensional nine-pillar" construction model based on the summary and feedback results. For instance, in response to the issue of insufficient guidance time for enterprise mentors, it is necessary to increase subsidies for enterprise mentors to encourage them to spend more time in guiding interns. In response to the issue of lagging in internship content, it is necessary to jointly develop new internship programs with enterprises to ensure that the internship content keeps pace with industry development.

5. Conclusion

The construction of digital-intelligence finance internship and training Bases under the background of industry-education integration is an important measure to address the challenges of the digital economy and cultivate high-quality digital-intelligence finance talents. The "three-dimensional nine-pillar" construction model constructed in this paper solves the issue of inadequate depth of school-enterprise cooperation from the dimension of muti-subject collaboration, the problem of disconnection between internship content and industry demand from the dimension of content structure, and the problem of ineffective quality control from the dimension of assessment and guarantee, forming an internship and training base construction system featuring "mutualistic symbiosis of schools and enterprises, digital intelligence, and dynamic guarantee". Practice has shown that this model can effectively enhance students' digital-intelligence practical ability and person-job fit, and provide enterprises with digital-intelligence financial talents that meet their needs, achieving a win-win situation for both schools and enterprises.

References:

- [1] Zhiqiang Wang.(2025)The Practical Value,Risk and Challenges,and Countermeasures of Digital Intelligence Technology-Empowered Internship Management in Vocational Undergraduate Colleges and Universities[J].Modern Vocational Education,27,57-60.
- [2] Hao Ying and Zifan Wang.(2025)Iterative Upgrading Pathways of College Students' Internship and Practice in the Digital Intelligence Era[J]. China Higher Education, 12,52-56.
- [3] Zhengzhong Cheng.(2024)Cognitive Internship Model of Engineering Management under the Background of Digital and Intelligent Transformation[J]. Journal of North China University of Technology, 36(04), 137-142.
- [4] Jingying Yang and Ruifeng Zhu.(2024)Training Models of Employment and Internship and Training Bases for Clothing Professionals in Higher Vocational Colleges and Universities under the Background of Digital Intelligence[J].Chemical Fiber and Textile Technology,53(02),221-223.