作者
卿 贤
文章摘要
膨胀土因具有显著胀缩特性,易在环境变化下引发边坡浅层破坏,威胁基础设施安全。本文基于毛细阻滞原理,提出一种柔性生态防护系统,采用植被层-细粒层-粗粒层三元结构:植被层阻滞雨水下渗,细粒层通过毛细屏障效应储存水分,粗粒层快速排水,协同调控边坡水分迁移,抑制胀缩循环。以瓦东干渠1#滑坡为案例,结合毛细屏障理论优化设计参数,构建柔性防护体系,实现膨胀土边坡的稳定性提升。该系统通过分层阻渗-蓄水-排水机制,减少水分入渗对土体结构的扰动,为膨胀土边坡治理提供了一种生态化、可持续的解决方案,兼具工程实用性与环境适应性,可为类似工程提供参考。
文章关键词
毛细屏障效应;膨胀土边坡;柔性生态防护系统
参考文献
[1] 李生林, 施斌, 杜延军. 中国膨胀土工程地质研究 [J]. 自然杂志, 1997, (02): 82-6.
[2] 殷宗泽, 袁俊平, 韦杰, et al. 论裂隙对膨胀土边坡稳定的影响 [J]. 岩土工程学报, 2012, 34(12): 2155-61.
[3] 殷宗泽, 韦杰, 袁俊平, et al. 膨胀土边坡的失稳机理及其加固 [J]. 水利学报, 2010, 41(01): 1-6.
[4] 谢灿荣, 董宏源, 裴佩, et al. 滴灌作用下膨胀土边坡表层含水量影响因素分析 [J]. 人民长江, 2018, 49(17): 31-8.
[5] 刘华强, 殷宗泽. 裂缝对膨胀土抗剪强度指标影响的试验研究 [J]. 岩土力学, 2010, 31(03): 727-31.
[6] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题 [J]. 岩土工程学报, 2004, (01): 1-15.
[7] 徐光明, 王国利, 顾行文, et al. 雨水入渗与膨胀性土边坡稳定性试验研究 [J]. 岩土工程学报, 2006, (02): 270-3.
[8] KHIRE M V, BENSON C H, BOSSCHER P J. Field Data from a Capillary Barrier and Model Predictions with UNSAT-H [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(125): 518-27.
[9] 焦卫国. 西北黄土/碎石覆盖层水分存储-释放机理及防渗设计方法 [D]; 浙江大学.
[10] STORMONT J C, MORRIS C E. Method to Estimate Water Storage Capacity of Capillary Barriers [J]. Journal of Geotechnical Geoenvironmental Engineering, 1998, 124(4): 297-302.
[11] RP. B B A M C. The behavior of inclined covers used as oxygen barriers [J]. Canadian Geotechnical Journal, 2003, 40(3).
[12] NYHAN J W, HAKONSON T E, DRENNON B J. A Water Balance Study of Two Landfill Cover Designs for Semiarid Regions [J]. Journal of Environmental Quality, 1990, 19(2): 281.
[13] KAMPF M, HOLFELDER T, MONTENEGRO H. Identification and parameterization of flow processes in artificial capillary barriers [J]. Water Resources Research, 2003, 39(10): 85-94.
[14] SMESRUD J K, SELKER J S. Effect of Soil-Particle Size Contrast on Capillary Barrier Performance [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 885-8.
[15] CHEN R, LIU J, NG C, et al. Influence of Slope Angle on Water Flow in a Three-Layer Capillary Barrier Soil Cover under Heavy Rainfall [J]. Soil Science Society of America Journal, 2019.
[16] RAHARDJO H, SANTOSO V A, LEONG E C, et al. Performance of an Instrumented Slope Covered by a Capillary Barrier System [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(4): 481-90.
[17] RAHARDJO H, KIM Y, GOFAR N, et al. Field instrumentations and monitoring of GeoBarrier System for steep slope protection [J]. Transportation Geotechnics, 2018: S221439121730209X-.
[18] RAHARDJO H, KIM Y, SATYANAGA A. Role of unsaturated soil mechanics in geotechnical engineering [J]. International Journal of Geo-Engineering, 2019, 10(1).
[19] 李光耀. 毛细阻滞型覆盖层微观-宏观水气传导特性及服役性能 [D]; 浙江大学, 2020.
[20] 焦卫国, 詹良通, 季永新, et al. 黄土–碎石毛细阻滞覆盖层储水能力实测与分析 [J]. 岩土工程学报, 2019, 41(06): 1149-57.
[21] 杜磊. 毛细阻滞式覆盖系统的数值模拟研究 [D]; 哈尔滨工业大学, 2011.
[22] 邓林恒. 湿润气候区毛细阻滞型覆盖层性能试验研究及其工程应用 [D]; 浙江大学, 2011.
[23] PARENT S E, CABRAL A. Design of Inclined Covers with Capillary Barrier Effect [J]. Geotechnical and Geological Engineering, 2006, 24(3): 689-710.
[24] KISCH M. The theory of seepage from clay-blanketed reservoirs [J]. Geotechnique, 1959, 9(1): 9-21.
[25] ROSS B. The diversion capacity of capillary barriers Water Resources Research [J]. Water Resources Research, 1990, 26(10).
Full Text:
DOI