作者
倪良伟,许 炜
文章摘要
本文综述了类器官技术在肿瘤研究中的最新进展及其未来发展趋势。首先,文章阐述了肿瘤细胞高度异质性和复杂微环境所带来的精准诊断及个体化治疗挑战,指出传统二维细胞培养和动物模型在重现肿瘤真实状态方面的局限性。随后,详细介绍了类器官的基本概念、形成原理及分类,强调其在三维体外培养体系中对原始组织结构和功能的高度还原。文章进一步探讨了类器官在肿瘤发生机制解析、肿瘤微环境重构、高通量药物筛选、药敏性预测及免疫治疗评估中的应用,并分析了其在模拟体内环境、培养标准化和成本控制等方面存在的不足。最后,本文对新技术(如微流控、3D打印和基因编辑)的整合、多模型联合应用以及标准化生物库建设等未来研究方向进行了前瞻性展望,旨在为肿瘤精准治疗提供更为坚实的技术支持和理论依据。
文章关键词
类器官;肿瘤研究;精准医疗;药物筛选;肿瘤微环境;个体化治疗;临床转化
参考文献
[1] Sato,T.et al.Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche.Nature 459,262-265(2009).
[2] Clevers,H.Modeling Development and Disease with Organoids.Cell 165,1586-1597(2016).
[3] Dutta,D.,Heo,I.&Clevers,H.Disease Modeling in Stem Cell-Derived 3D Organoid Systems.Trends Mol Med 23,393-410(2017).
[4] Nanki,K.et al.Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis.Cell 174,856-869.e817(2018).
[5] Drost,J.et al.Sequential cancer mutations in cultured human intestinal stem cells.Nature 521,43-47(2015).
[6] He,G.et al.Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation.Cell Stem Cell 29,1333-1345.e1336(2022).
[7] Tan,H.et al.Intestinal organoid technology and applications in probiotics.Crit Rev Food Sci Nutr 65,1055-1069(2025).
[8] Lancaster,M.A.et al.Cerebral organoids model human brain development and microcephaly.Nature 501,373-379(2013).
[9] Neal,J.T.et al.Organoid Modeling of the Tumor Immune Microenvironment.Cell 175,1972-1988.e1916(2018).
[10] Öhlund,D.et al.Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer.J Exp Med 214,579-596(2017).
[11] Yao,Y.et al.Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer.Cell Stem Cell 26,17-26.e16(2020).
[12] Shinozawa,T.et al.High-Fidelity Drug-Induced Liver Injury Screen Using Human Pluripotent Stem Cell-Derived Organoids.Gastroenterology 160,831-846.e810(2021).[13] Wang,Z.et al.3D-organoid culture supports differentiation of human CAR(+)iPSCs into highly functional CAR T cells.Cell Stem Cell 29,515-527.e518(2022).
[14] Tian,J.et al.Combined PD-1,BRAF and MEK inhibition in BRAF(V600E)colorectal cancer:a phase 2 trial.Nat Med 29,458-466(2023).
[15] Kim,S.C.et al.Multifocal Organoid Capturing of Colon Cancer Reveals Pervasive Intratumoral Heterogenous Drug Responses.Adv Sci(Weinh)9,e2103360(2022).
[16] Mo,S.et al.Patient-Derived Organoids from Colorectal Cancer with Paired Liver Metastasis Reveal Tumor Heterogeneity and Predict Response to Chemotherapy.Adv Sci(Weinh)9,e2204097(2022).
[17] Bao,L.,Cui,X.,Bai,R.&Chen,C.Advancing intestinal organoid technology to decipher nano-intestine interactions and treat intestinal disease.Nano Res 16,3976-3990(2023).
[18] Yu,T.,Yang,Q.,Peng,B.,Gu,Z.&Zhu,D.Vascularized organoid-on-a-chip:design,imaging,and analysis.Angiogenesis 27,147-172(2024).
[19] Skardal,A.et al.Drug compound screening in single and integrated multi-organoid body-on-a-chip systems.Biofabrication 12,025017(2020).
[20] Rosenbluth,J.M.et al.Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages.Nat Commun 11,1711(2020).
[21] Jiang,S.et al.An Automated Organoid Platform with Inter-organoid Homogeneity and Inter-patient Heterogeneity.Cell Rep Med 1,100161(2020).
[22] Zheng,F.,Xiao,Y.,Liu,H.,Fan,Y.&Dao,M.Patient-Specific Organoid and Organ-on-a-Chip:3D Cell-Culture Meets 3D Printing and Numerical Simulation.Adv Biol(Weinh)5,e2000024(2021).
[23] Aisenbrey,E.A.&Murphy,W.L.Synthetic alternatives to Matrigel.Nat Rev Mater 5,539-551(2020).
[24] Farin,H.F.et al.Colorectal Cancer Organoid-Stroma Biobank Allows Subtype-Specific Assessment of Individualized Therapy Responses.Cancer Discov 13,2192-2211(2023).
Full Text:
DOI