SUVmax值联合PET影像组学鉴别良、恶性高代谢淋巴结

ISSN:2811-051X(P)

EISSN:2811-0781(O)

语言:中文

作者
白浩洋,张雅萍
文章摘要
目的:联合18F-FDG-PET/CT图像传统参数及影像组学特征构建联合模型,探讨模型在良、恶性高代谢淋巴结中的鉴别诊断价值。方法:回顾性纳入表现为高代谢淋巴结患者的图像及临床资料。使用PET/CT中最大标准摄取值(SUVmax)作为临床模型,最终构建临床-影像组学联合模型,通过ROC曲线评估联合模型的预测能力。结果:PET影像组学模型与传统参数构建的联合模型预测价值高于单一模型。结论:联合模型构建的列线图在良、恶高代谢淋巴结鉴别方面具有积极价值,有利于指导临床治疗。
文章关键词
高代谢淋巴结;PET/CT;影像组学
参考文献
[1] Xie Y, Zhao H, Guo Y, et al. A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer. Eur Radiol. 2021;31:6030–6038. [2] Ugurlu E, Metin M, Cetin N, et al. Evaluation of hypermetabolic mediastinal-hilar lymph nodes determined by PET/CT with EBUS-TBNA and calculation of SUVmax cutoff values in differentiation of malignancy. Medicine. 2023;102:e34928. [3] Perigaud C, Bridji B, Roussel JC, et al. Prospective preoperative mediastinal lymph node staging by integrated positron emission tomography–computerised tomography in patients with non-small-cell lung cancer☆. European Journal of Cardio-Thoracic Surgery. 2009;36:731–736. [4] Hashimoto K, Daddi N, Giuliani M, et al. The role of endobronchial ultrasound-guided transbronchial needle aspiration in stereotactic body radiation therapy for non-small cell lung cancer. Lung Cancer. 2018;123:1–6. [5] Gan Q, Stewart JM, Valik E, et al. Cytologic Evaluation of Positron Emission Tomography-Computed Tomography–Positive Lymph Nodes Sampled by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: Experience at a Large Cancer Center. Archives of Pathology & Laboratory Medicine. 2019;143:1265–1270. [6] Ouyang M, Wang Y, Deng Q, et al. Development and Validation of a 18F-FDG PET-Based Radiomic Model for Evaluating Hypermetabolic Mediastinal–Hilar Lymph Nodes in Non-Small-Cell Lung Cancer. Front Oncol. 2021;11:710909. [7] Lovinfosse P, Ferreira M, Withofs N, et al. Distinction of Lymphoma from Sarcoidosis on 18 F-FDG PET/CT: Evaluation of Radiomics-Feature–Guided Machine Learning Versus Human Reader Performance. J Nucl Med. 2022;63:1933–1940. [8] Lee ES, Paeng JC, Park CM, et al. Metabolic Characteristics of Castleman Disease on 18F-FDG PET in Relation to Clinical Implication. Clinical Nuclear Medicine. 2013;38:339–342. [9] Shim SS, Lee KS, Kim B-T, et al. Non–Small Cell Lung Cancer: Prospective Comparison of Integrated FDG PET/CT and CT Alone for Preoperative Staging. Radiology. 2005;236:1011–1019. [10] Lin W-Y, Hsu W-H, Lin K-H, et al. Role of preoperative PET-CT in assessing mediastinal and hilar lymph node status in early stage lung cancer. Journal of the Chinese Medical Association. 2012;75:203–208. [11] Bulut S, Celik D, Karamanlı H, et al. The Differentiation of Metastatic Mediastinal Lymph Nodes From Benign Hypermetabolic Lesions. Cureus. . Epub ahead of print May 10, 2022. DOI: 10.7759/cureus.24884. [12] KandemıR Z, Şentürk A, ÖzdemıR E, et al. The evaluation of hypermetabolic mediastinal–hilar lymph nodes determined byPET/CT in pulmonary and extrapulmonary malignancies: correlation with EBUS-TBNA. Turk J Med Sci. 2015;45:1234–1242. [13] Koksal D, Demirag F, Bayiz H, et al. The correlation of SUVmax with pathological characteristics of primary tumor and the value of Tumor/ Lymph node SUVmax ratio for predicting metastasis to lymph nodes in resected NSCLC patients. J Cardiothorac Surg. 2013;8:63. [14] Zhang R, Liang L, Li D, et al. Analysis of the clinical manifestations and 18F-FDG PET-CT findings in 40 patients with histiocytic necrotizing lymphadenitis. Medicine. 2021;100:e27189.[15] Gotthardt M, Bleeker-Rovers CP, Boerman OC, et al. Imaging of Inflammation by PET, Conventional Scintigraphy, and Other Imaging Techniques. J Nucl Med. 2010;51:1937–1949. [16] on behalf of the PET/CT Task Force of the Region of Southern Denmark, Petersen H, Holdgaard PC, et al. FDG PET/CT in cancer: comparison of actual use with literature-based recommendations. Eur J Nucl Med Mol Imaging. 2016;43:695–706. [17] Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the Use of 18 F-FDG PET in Oncology. J Nucl Med. 2008;49:480 –508. [18] Nambu A, Kato S, Sato Y, et al. Relationship between maximum standardized uptake value (SUVmax) of lung cancer and lymph node metastasis on FDG-PET. Ann Nucl Med. 2009;23:269–275. [19] Mehta RM, Biraris P, Patil S, et al. Utility of EBUS-TBNA in PET-positive mediastinal lymph nodes in subjects with extra-thoracic malignancy. PLoS ONE. 2019;14:e0213437. [20] Jiang Y, Hou G, Zhu Z, et al. 18F-FDG PET/CT imaging features of patients with multicentric Castleman disease. Nuclear Medicine Communications. 2021;42:833–838. [21] Hon J, Vergara-Lluri M, Siddiqi I, et al. Kikuchi-Fujimoto Disease Involving Retroperitoneal Lymph Nodes: An Uncommon Presentation. Hematology Reports. 2021;13:9001. [22] Calabria F, Bagnato A, Guadagnino G, et al. COVID-19 vaccine related hypermetabolic lymph nodes on PET/CT: Implications of inflammatory findings in cancer imaging. Oncology Research. 2023;31:117–124. [23] Cohen D, Krauthammer SH, Wolf I, et al. Hypermetabolic lymphadenopathy following administration of BNT162b2 mRNA Covid-19 vaccine: incidence assessed by [18F]FDG PET-CT and relevance to study interpretation. Eur J Nucl Med Mol Imaging. 2021;48:1854–1863. [24] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer. 2012;48:441–446.
Full Text:
DOI