作者
黄凯璇,何星晓,覃后继,吕建楠
文章摘要
新型冠状病毒肺炎(corona virus disease 2019,COVID-19)的预后受到很多因素的影响。本文拟从宿主因素(人口学特征、基础病、宿主遗传因素)、环境因素及病毒因素等对COVID-19患者整体预后产生影响的因素加以综述,为临床诊疗提供思路,并为进一步探讨环境、免疫与健康的关系奠定理论基础。
文章关键词
新型冠状病毒肺炎(COVID-19);预后因素;环境因素;宿主因素
参考文献
[1] LI Q, KOBAYASHI M, WAKAYAMA Y, et al. Effect of phytoncide from trees on human natural killer cell function[J]. Int J Immunopathol Pharmacol, 2009,22(4): 951-959.
[2] SCHNEIDER J L, ROWE J H, GARCIA-DE-ALBA C, et al. The aging lung: Physiology, disease, and immunity[J]. Cell, 2021,184(8): 1990-2019.
[3] BEZMAN N A, KIM C C, SUN J C, et al. Molecular definition of the identity and activation of natural killer cells[J]. Nat Immunol, 2012,13(10): 1000-1009.
[4] SIM B, CHIDAMBARAM S K, WONG X C, et al. Clinical characteristics and risk factors for severe COVID-19 infections in Malaysia: A nationwide observational study[J]. Lancet Reg Health West Pac, 2020,4: 100055.
[5] PAIRO-CASTINEIRA E, RAWLIK K, BRETHERICK A D, et al. Author Correction: GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19[J]. Nature (London), 2023,619(7971): E61.
[6] SANCHEZ-VAZQUEZ R, GUÍO-CARRIÓN A, ZAPATERO-GAVIRIAA, et al. Shorter telomere lengths in patients with severe COVID-19 disease[J]. Aging (Albany, NY.), 2021,13(1): 1-15.
[7] REMUZZI A, REMUZZI G. COVID-19 and Italy: what next?[J]. The Lancet (British edition), 2020,395(10231): 1225-1228.
[8] DU Y, ZHOU N, ZHA W, et al. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: A meta-analysis[J]. Nutrition, metabolism, and cardiovascular diseases, 2021,31(3): 745-755.
[9] GUBBELS BUPP M R, JORGENSEN T N. Androgen-Induced Immunosuppression[J]. Frontiers in immunology, 2018,9: 794.
[10] HOFFMANN M K H S S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor[J]. Cell, 2020,181(2): 271-280.
[11] M. B, N. P, F. F, et al. Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males[J]. EBioMedicine, 2021,65: 103246.
[12] ZHAO J, YANG Y, HUANG H, et al. Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility[J]. Clinical infectious diseases, 2021,73(2): 328-331.
[13] ZIETZ M, ZUCKER J, TATONETTI N P. Associations between blood type and COVID-19 infection, intubation, and death[J]. Nature communications, 2020,11(1): 5761.
[14] BUJANDA L, BUTI M, INVERNIZZI P, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure[J]. The New England journal of medicine, 2020,383(16): 1522-1534.
[15] JELINEK H F, MOUSA M, ALKAABI N, et al. Allelic Variants Within the ABO Blood Group Phenotype Confer Protection Against Critical COVID-19 Hospital Presentation[J]. Frontiers in medicine, 2022,8: 759648.
[16] REDDY R K, CHARLES W N, AL. E. The effect of smoking on COVID-19 severity: A systematic review and meta-analysis[J]. Med. Virol, 2021,93: 1045-1056.
[17] PATANAVANICH R, GLANTZ S A. Smoking is associated with worse outcomes of COVID-19 particularly among younger adults: a systematic review and meta-analysis[J]. BMC Public Health, 2021,21(1): 1554.
[18] CLIFT A K, von ENDE A, TAN P S, et al. Smoking and COVID-19 outcomes: an observational and Mendelian randomisation study using the UK Biobank cohort[J]. Thorax, 2022,77(1): 65-73.
[19] DAVID SIMONS L S J B. The association of smoking status with SARS-CoV-2 infection,hospitalization and mortality from COVID ‐19:a living rapid evidence review with Bayesian meta-analyses (version 7)[J]. Addiction, 2021,116(6): 1319-1368.
[20] PIASECKI T M, SMITH S S, BAKER T B, et al. Smoking Status, Nicotine Medication, Vaccination, and COVID-19 Hospital Outcomes: Findings from the COVID EHR Cohort at the University of Wisconsin (CEC-UW) Study[J]. Nicotine Tob Res, 2023,25(6): 1184-1193.
[21] Du Y, LV Y, ZHA W, et al. Association of body mass index (BMI) with critical COVID-19 and in-hospital mortality: A dose-response meta-analysis[J]. Metabolism, 2021,117: 154373.
[22] LOOSEN S H, JENSEN B O, TANISLAV C, et al. Obesity and lipid metabolism disorders determine the risk for development of long COVID syndrome: a cross-sectional study from 50,402 COVID-19 patients[J]. Infection, 2022,50(5): 1165-1170.
[23] CAUSSY C, PATTOU F, WALLET F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France[J]. The lancet. Diabetes & endocrinology, 2020,8(7): 562-564.
[24] KOMPANIYETS L, GOODMAN A B, BELAY B, et al. Body Mass Index and Risk for COVID-19-Related Hospitalization, Intensive Care Unit Admission, Invasive Mechanical Ventilation, and Death - United States, March-December 2020[J]. MMWR Morb Mortal Wkly Rep, 2021,70(10): 355-361.
[25] HONCE R, SCHULTZ-CHERRY S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution[J]. Front Immunol, 2019,10: 1071.
[26] 邱晨, 王凤燕, 陈荣昌. 推进健康中国慢性呼吸系统疾病防治行动计划的实施[J]. 中华医学杂志, 2019,99(48): 3761-3764.
[27] SKEVAKI C, KARSONOVAA, KARAULOV A, et al. SARS-CoV-2 infection and COVID-19 in asthmatics: a complex relationship[J]. Nature reviews. Immunology, 2021,21(4): 202-203.
[28] ZHU Z, HASEGAWA K, MA B, et al. Association of asthma and its genetic predisposition with the risk of severe COVID-19[J]. J Allergy Clin Immunol, 2020,146(2): 327-329.
[29] FAGNI F, SIMON D, TASCILAR K, et al. COVID-19 and immune-mediated inflammatory diseases: effect of disease and treatment on COVID-19 outcomes and vaccine responses[J]. Lancet Rheumatol, 2021,3(10): e724-e736.
[30] 邓笑伟, 常德. 新型冠状病毒肺炎预后相关因素的研究进展[J].实用医学杂志, 2021,37(5): 559-563.
[31] MÜLLER J A, GROß R, CONZELMANN C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas[J]. Nature metabolism, 2021,3(2): 149-165.
[32] WU C, LIDSKY P V, XIAO Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment[J]. Cell metabolism, 2021,33(8): 1565-1576.
[33] VARGA Z F A S P. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020,395: 1417-1418.
[34] ZHOU F, YU T, DU R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study[J]. The Lancet (British edition), 2020,395(10229): 1054-1062.
[35] DAI M, LIU D, LIU M, et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak[J]. Cancer Discov, 2020,10(6): 783-791.
[36] AL. R C W E. Risk factors associated with the severity of COVID-19[J]. Pediatrics, 2023,30(3): 84-92.
[37] ALLALI S, BEDDOK A, KIROVA Y. Is cancer a prognostic factor for severe COVID-19, especially for breast cancer patients?[J]. Cancer radiothérapie, 2022,26(3): 491-493.
[38] INITIATIVE C H G. Mapping the human genetic architecture of COVID-19[J]. Nature, 2021,600(7889): 472-477.
[39] GANNA A, DEBETTE S, TREGOUET D. A second update on mapping the human genetic architecture of COVID-19[J]. Nature (London), 2023.
[40] HOU Y, ZHAO J, MARTIN W, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis[J]. BMC Med, 2020,18(1): 216.
[41] LI Y, KE Y, XIA X, et al. Genome-wide association study of COVID-19 severity among the Chinese population[J]. Cell discovery, 2021,7(1): 76.
[42] AL H Y E. The impact of temperature on the risk of COVID-19:A-Multinational study[J]. Int J Environ Res Public Health, 2021,8(4052).
[43] RIDDELL S, GOLDIE S, HILL A, et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces[J]. Virol J, 2020,17(1): 145.
[44] 冯雷, 李旭东. 高温热浪对人类健康影响的研究进展[J]. 环境与健康杂志, 2016,33(2): 182-188.
[45] BIRYUKOV J, BOYDSTON J A, DUNNING R A, et al. Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces[J]. mSphere, 2020,5(4).
[46] KUDO E, SONG E, YOCKEY L J, et al. Low ambient humidity impairs barrier function and innate resistance against influenza infection[J]. Proceedings of the National Academy of Sciences - PNAS, 2019,116(22): 10905-10910.
[47] 刘震超, 刘光, 周缜, 等. 两种不同气候环境 COVID-19 活动相关气候因素比较[J]. 青岛大学学报(医学版), 2021,57(6): 923-927.[48] WEAVER A K, HEAD J R, GOULD C F, et al. Environmental Factors Influencing COVID-19 Incidence and Severity[J]. Annual review of public health, 2022,43(1): 271-291.
[49] MARKUS HOFFMANN H K, SIMON SCHROEDER M A M L, CHRISTIAN DROSTEN S P H. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor[J]. Cell, 2020,181(2): 271-280.
[50] SARMADI M, MARUFI N, KAZEMI M V. Association of COVID-19 global distribution and environmental and demographic factors: An updated three-month study[J]. Environ Res, 2020,188: 109748.
[51] LI M, ZHANG Z, CAO W, et al. Identifying novel factors associated with COVID-19 transmission and fatality using the machine learning approach[J]. The Science of the total environment, 2021,764: 142810.
[52] YAU K K, LOKE A Y. Effects of forest bathing on pre-hypertensive and hypertensive adults: a review of the literature[J]. Environ Health Prev Med, 2020,25(1): 23.
[53] IDENO Y, HAYASHI K, ABE Y, et al. Blood pressure-lowering effect of Shinrin-yoku (Forest bathing): a systematic review and meta-analysis[J]. BMC Complement Altern Med, 2017,17(1): 409.
[54] LI Q, OCHIAI H, OCHIAI T, et al. Effects of forest bathing (shinrin-yoku) on serotonin in serum, depressive symptoms and subjective sleep quality in middle-aged males[J]. Environ Health Prev Med, 2022,27: 44.
[55] ROBINSON J M. Nature’s Role in Supporting Health during the COVID-19Pandemic: A Geospatial and Socioecological Study[J]. Public Health, 2021,18(2227).
[56] YA-DONG GAO M D X D. Risk factors for severe and critically ill COVID-19 patients: A review[J]. Allergy, 2021,2(428): 410-455.
[57] CAMPI I, GENNARI L, MERLOTTI D, et al. Vitamin D and COVID-19 severity and related mortality: a prospective study in Italy[J]. BMC infectious diseases, 2021,21(1): 1-566.
[58] HELLER R A, SUN Q, HACKLER J, et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker[J]. Redox Biol, 2021,38: 101764.
[59] YU W, GUO Y, ZHANG S, et al. Proportion of asymptomatic infection and nonsevere disease caused by SARS‐CoV‐2 Omicron variant: A systematic review and analysis[J]. Journal of medical virology, 2022,94(12): 5790-5801.
[60] KARIM S, KARIM Q A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic[J]. Lancet, 2021,398(10317): 2126-2128.
[61] SUZUKI R, YAMASOBA D, KIMURA I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant[J]. Nature (London), 2022,603(7902): 700-705.
[62] MENG B, ABDULLAHI A, FERREIRA I A T M, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity[J]. Nature (London), 2022,603(7902): 706-714.
[63] MAGEN O, WAXMAN J G, MAKOV-ASSIF M, et al. Fourth Dose of BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting[J]. The New England journal of medicine, 2022,386(17): 1603-1614.
[64] WOHL A L R. Protection by a Fourth Dose of BNT162b2 against Omicron in Israel[J]. N Engl J Med, 2022,386(25): 2441.
Full Text:
DOI