基于人工智能的肺癌诊疗算法研究进展

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
李贵智,张九进
文章摘要
肺癌具有高发病率和高死亡率,早期诊断与精准诊疗对改善患者预后至关重要。本文综述了人工智能在肺癌诊疗算法中的研究进展,包括多模态医学图像融合、分割与分类技术在肺结节鉴别及早期诊断中的应用,人工智能在肺癌远处转移(如脑、骨、肝转移)和淋巴结转移预测中的效能,以及其在肺癌相关基因学分析(如基因突变预测、遗传特征揭示)中的作用。同时,探讨了当前研究存在的数据集局限、评价指标不足等问题,旨在为后续研究优化提供参考,推动人工智能在肺癌精准诊疗中的进一步应用。
文章关键词
人工智能;肺癌;机器学习;算法
参考文献
[1] Li N,Tan F,Chen W,Dai M,Wang F,Shen S,Tang W,Li J,Yu Y,Cao W,Xu Y,Qin C,Zhao L,Zhu M,Guo L,Wu Z,Yang Z,Zheng Y,Chen H,Liu Y,Wei D,Dong D,Cao J,Zhang S,Yan S,Wang N,Du L,Shen H,Wu N,He J;National Lung Cancer Screening programme group.One-off low-dose CT for lung cancer screening in China:a multicentre,population-based,prospective cohort study.Lancet Respir Med.2022 Apr;10(4):378-391. [2] Wu F,Wang L,Zhou C.Lung cancer in China:current and prospect.Curr Opin Oncol.2021 Jan;33(1):40-46. [3] de Koning HJ,van der Aalst CM,de Jong PA,Scholten ET,Nackaerts K,Heuvelmans MA,Lammers JJ,Weenink C,Yousaf-Khan U,Horeweg N,van't Westeinde S,Prokop M,Mali WP,Mohamed Hoesein FAA,van Ooijen PMA,Aerts JGJV,den Bakker MA,Thunnissen E,Verschakelen J,Vliegenthart R,Walter JE,Ten Haaf K,Groen HJM,Oudkerk M.Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial.N Engl J Med.2020 Feb 6;382(6):503-513. [4] Field JK,Vulkan D,Davies MPA,Baldwin DR,Brain KE,Devaraj A,Eisen T,Gosney J,Green BA,Holemans JA,Kavanagh T,Kerr KM,Ledson M,Lifford KJ,McRonald FE,Nair A,Page RD,Parmar MKB,Rassl DM,Rintoul RC,Screaton NJ,Wald NJ,Weller D,Whynes DK,Williamson PR,Yadegarfar G,Gabe R,Duffy SW.Lung cancer mortality reduction by LDCT screening:UKLS randomised trial results and international meta-analysis.Lancet Reg Health Eur.2021 Sep 11;10:100179. [5] 金强国.基于深度学习的医疗影像分割模型研究[D].天津大学,2021. [6] 李美育.基于生成对抗网络的医学影像分割和分类算法的研究[D].吉林大学,2022. [7] 张子睿,焦子宸,史校铭,等.基于微变放大技术的肺结节识别算法研究[J].中国胸心血管外科临床杂志,2025,32(03):339-344. [8] Feng B,Chen X,Chen Y,Lu S,Liu K,Li K,Liu Z,Hao Y,Li Z,Zhu Z,Yao N,Liang G,Zhang J,Long W,Liu X.Solitary solid pulmonary nodules:a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas.Eur Radiol.2020 Dec;30(12):6497-6507. [9] Hua W,Cui R,Yang H,Zhang J,Liu C,Sun J.Uncovering critical transitions and molecule mechanisms in disease progressions using Gaussian graphical optimal transport.Commun Biol.2025 Apr 6;8(1):575. [10] Xia HW,Zhang ZQ,Yuan J,Niu QL.Human RECQL5 promotes metastasis and resistance to cisplatin in non-small cell lung cancer.Life Sci.2021 Jan 15;265:118768. [11] 中国医疗保健国际交流促进会肿瘤内科学分会,中国医师协会肿瘤医师分会.Ⅳ期原发性肺癌中国治疗指南(2024版).中华肿瘤杂志,2024,46(07):595-636. [12] Brodowicz T,O'Byrne K,Manegold C.Bone matters in lung cancer.Ann Oncol.2012 Sep;23(9):2215-2222. [13] Li J,Zhu H,Sun L,Xu W,Wang X.Prognostic value of site-specific metastases in lung cancer:A population based study.J Cancer.2019 Jun 2;10(14):3079-3086. [14] Ren Y,Dai C,Zheng H,Zhou F,She Y,Jiang G,Fei K,Yang P,Xie D,Chen C.Prognostic effect of liver metastasis in lung cancer patients with distant metastasis.Oncotarget.2016 Aug 16;7(33):53245-53253. [15] 瞿姣.基于磁共振组学特征及人工智能对脑转移瘤自动识别、标注及精准预测的研究[D].四川大学,2023. [16] 李晓,李侠,葛静,等.基于机器学习构建肺腺癌骨转移自动化模型[J].中国当代医药,2024,31(23):114-119 [17] He X,Guan C,Chen T,Wu H,Su L,Zhao M,Guo L.Predicting brain metastases in EGFR-positive lung adenocarcinoma patients using pre-treatment CT lung imaging data.Eur J Radiol.2025 Sep;190:112265. [18] 崔婀娜,王晓煜,赵鹏,等.机器学习结合MRI影像鉴别脑转移瘤来源[J].肿瘤影像学,2024,33(06):569-576. [19] Munai E,Zeng S,Yuan Z,Yang D,Jiang Y,Wang Q,Wu Y,Zhang Y,Tao D.Machine learning-based prediction model for brain metastasis in patients with extensive-stage small cell lung cancer.Sci Rep.2024 Nov 20;14(1):28790. [20] Siegel RL,Miller KD,Wagle NS,Jemal A.Cancer statistics,2023.CA Cancer J Clin.2023 Jan;73(1):17-48. [21] Dong M,Hou G,Li S,Li N,Zhang L,Xu K.Preoperatively Estimating the Malignant Potential of Mediastinal Lymph Nodes:A Pilot Study Toward Establishing a Robust Radiomics Model Based on Contrast-Enhanced CT Imaging.Front Oncol.2021 Jan 8;10:558428. [22]李静尧,邱阳,王海东.人工智能技术在肺癌临床诊疗中的应用与展望[J].重庆医学,2024,53(07):961-964+971. [23] 王子淮.非小细胞肺癌N1淋巴结的评估意义与转移预测模型建立[D].四川大学,2021. [24] 代海韵.cT1期肺癌发生淋巴结及远处转移的深度学习预测模型构建及转移机制探索[D].重庆医科大学,2023. [25] Yan HJ,Zhao JS,Zuo HD,Zhang JJ,Deng ZQ,Yang C,Luo X,Wan JX,Zheng XY,Chen WY,Li SP,Tian D.Dual-Region Computed Tomography Radiomics-Based Machine Learning Predicts Subcarinal Lymph Node Metastasis in Patients with Non-small Cell Lung Cancer.Ann Surg Oncol.2024 Aug;31(8):5011-5020. [26] Kang Y,Li M,Xing X,Qian K,Liu H,Qi Y,Liu Y,Cui Y,Zhang H.Computed tomography-based radiomics model for predicting station 4 lymph node metastasis in non-small cell lung cancer.BMC Med Imaging.2025 Jun 4;25(1):202. [27] Ma X,Xia L,Chen J,Wan W,Zhou W.Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma:comparison with radiomics signature and clinical-semantic model.Eur Radiol.2023 Mar;33(3):1949-1962. [28] 赵星羽.肺癌淋巴结转移智能诊断模型构建研究[D].中国科学技术大学,2022. [29] Caballé-Perez E,Hernández-Pedro N,Ramos-Ramírez M,Barrios-Bernal P,Romero-Núñez E,Lucio-Lozada J,Ávila-Ríos S,Reyes-Terán G,Cardona AF,Arrieta O.Impact of KRASG12D subtype and concurrent pathogenic mutations on advanced non-small cell lung cancer outcomes.Clin Transl Oncol.2024 Apr;26(4):836-850. [30] Kanthali M,Mamgain P,Dhawan P,Bhagwat G,Patel S,Purohit MR.Programmed Death Ligand-1 and Gene Mutation Characterization of Lung Malignancies in Patients at a Rural Hospital in Central India.Asian Pac J Cancer Prev.2023 Jun 1;24(6):1855-1861. [31] Thomas QD,Vendrell JA,Khellaf L,Cavaillon S,Quantin X,Solassol J,Cabello-Aguilar S.Artificial intelligence-driven microsatellite instability profiling reveals distinctive genetic features in patients with lung cancer.Cancer.2025 May 1;131(9):e35882. [32] Wang J,Xie X,Shi J,He W,Chen Q,Chen L,Gu W,Zhou T.Denoising Autoencoder,A Deep Learning Algorithm,Aids the Identification of A Novel Molecular Signature of Lung Adenocarcinoma.Genomics Proteomics Bioinformatics.2020 Aug;18(4):468-480. [33] Coudray N,Ocampo PS,Sakellaropoulos T,Narula N,Snuderl M,FenyöD,Moreira AL,Razavian N,Tsirigos A.Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.Nat Med.2018 Oct;24(10):1559-1567. [34] Shiri I,Maleki H,Hajianfar G,Abdollahi H,Ashrafinia S,Hatt M,Zaidi H,Oveisi M,Rahmim A.Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms.Mol Imaging Biol.2020 Aug;22(4):1132-1148. [35] Temel U,Derdiyok O.Driver mutations and malignant pleural effusion in non-small cell lung cancer.BMC Med Genomics.2025 Jul 1;18(1):112. [36] Kobayashi K,Bolatkan A,Shiina S,Hamamoto R.Fully-Connected Neural Networks with Reduced Parameterization for Predicting Histological Types of Lung Cancer from Somatic Mutations.Biomolecules.2020 Aug 28;10(9):1249.
Full Text:
DOI