乳腺癌免疫微环境的动态调控与重塑:从机制解析到精准免疫治疗

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
池久庆,马志军
文章摘要
乳腺癌免疫微环境(Tumor Immune Microenvironment,TIME)作为调控肿瘤发生发展及免疫治疗响应的关键因素,近年来引起广泛关注。TIME由多种免疫细胞及非细胞成分构成,其复杂的相互作用和空间异质性对肿瘤免疫逃逸和治疗效果产生重要影响。当前研究深入揭示了基因和表观遗传机制如何调控TIME的动态变化,推动了免疫微环境重塑策略的发展。ICI等免疫治疗手段在乳腺癌中的应用显示出显著疗效,联合治疗策略进一步提升了治疗潜力。然而,乳腺癌TIME的异质性和治疗耐受性仍是临床面临的重要挑战。本文系统综述了乳腺癌TIME的组成特点、调控机制及关键靶点,结合最新的临床应用进展,展望了未来技术创新与精准免疫治疗的发展方向,旨在为乳腺癌免疫治疗的个体化和有效性提供理论基础和实践指导。
文章关键词
乳腺癌;免疫微环境;免疫治疗;基因调控;免疫检查点;联合治疗;空间异质性
参考文献
[1] Kim J,Harper A,McCormack V,et al.Global patterns and trends in breast cancer incidence and mortality across 185 countries.Nat Med.2025;31(4):1154-1162. [2] Fu M,Peng Z,Wu M,Lv D,Li Y,Lyu S.Current and future burden of breast cancer in Asia:A GLOBOCAN data analysis for 2022 and 2050.Breast.79:103835. [3] Salehi AM,Shahbazi F,Garavand R,Kamkari S,Jenabi E.Global socioeconomic inequalities in breast,cervical,ovarian,and uterine cancers incidence,mortality,disability-adjusted life year’s rates:a relative concentration index analysis.BMC Womens Health.2025;25(1):433. Published 2025 Sep 25. [4] Devi S.Projected global rise in breast cancer incidence and mortality by 2050.Lancet Oncol..Published online Mar 6,2025. [5] Imani S,Farghadani R,Roozitalab G,et al.Reprogramming the breast tumor immune microenvironment:cold-to-hot transition for enhanced immunotherapy.J Exp Clin Cancer Res.2025;44(1):131.Published 2025 Apr 25. [6] Yan S,Sun X,Wang K.From cold to hot tumors:feasibility of applying therapeutic insights to TNBC.Discov Oncol.2025;16(1):1942. Published 2025 Oct 21. [7] Kundu M,Butti R,Panda VK,et al.Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer.Mol Cancer.2024;23(1):92.Published 2024 May 7. [8] Li J,Wu J,Han J.Analysis of Tumor Microenvironment Heterogeneity among Breast Cancer Subtypes to Identify Subtype-Specific Signatures.Genes(Basel).2022;14(1).Published 2022 Dec 23. [9] Jing L,Zhou K,Wang Z,et al.YTHDF1 shapes“cold”tumor and inhibits CD8+T cells infiltration and function in breast cancer.Exp Cell Res.2023;432(2):113778. [10] Hu C,Li Q,Xiang L,et al.Comprehensive pan-cancer analysis unveils the significant prognostic value and potential role in immune microenvironment modulation of TRIB3.Comput Struct Biotechnol J.23:234-250.Published 2024 Dec. [11] Liu L,Wu D,Qian Z,et al.Empowering hypoxia to convert cold tumors into hot tumors for breast cancer immunotherapy.Cell Death Discov.2025;11(1):381.Published 2025 Aug 14. [12] Chen Q,Zhang Q,He L,et al.T-cell hitchhiking nanodrug activates the cGAS-STING signaling pathway for enhanced cancer immunotherapy.Acta Biomater..Published online Oct 24,2025. [13] Zeng L,You K,Lu M,et al.A Multimodal Nanoplatform Integrating Photodynamic Therapy and Wnt/β-Catenin Inhibition Reprograms the Tumor Microenvironment to Potentiate Immune Checkpoint Therapy in Triple-Negative Breast Cancer.ACS Appl Mater Interfaces. 2025;17(26):38333-38347. [14] Wang S,Wang Z,Li Z,et al.A Catalytic Immune Activator Based on Magnetic Nanoparticles to Reprogram the Immunoecology of Breast Cancer from“Cold”to“Hot”State.Adv Healthc Mater.2022;11(21):e2201240. [15] Ledys F,Kalfeist L,Galland L,Limagne E,Ladoire S.Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer:Clinical Challenges and Perspectives.Cancers(Basel).2021;13(23).Published 2021 Nov 29. [16] Shabgah AG,Salmaninejad A,Thangavelu L,et al.The role of non-coding genome in the behavior of infiltrated myeloid-derived suppressor cells in tumor microenvironment;a perspective and state-of-the-art in cancer targeted therapy.Prog Biophys Mol Biol.161:17-26. [17] Sezginer O,Unver N.Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization. Inflamm Res.2024;73(9):1411-1423. [18] Su S.Effector Immune Cell Deployment:a revolutionized concept in cancer immunotherapy.Sci China Life Sci.2023;66(8):1930-1933. [19] Shang Q,Yu X,Sun Q,Li H,Sun C,Liu L.Polysaccharides regulate Th1/Th2 balance:A new strategy for tumor immunotherapy.Biomed Pharmacother.170:115976. [20] Truffi M,Sorrentino L,Corsi F.Fibroblasts in the Tumor Microenvironment.Adv Exp Med Biol.1234:15-29. [21] Uciechowski P,Dempke WCM.Interleukin-6:A Masterplayer in the Cytokine Network.Oncology.2020;98(3):131-137. [22] Morris G,Gevezova M,Sarafian V,Maes M.Redox regulation of the immune response.Cell Mol Immunol.2022;19(10):1079-1101. [23] Hallmann R,Zhang X,Di Russo J,et al.The regulation of immune cell trafficking by the extracellular matrix.Curr Opin Cell Biol. 36:54-61. [24] Qiu ZW,Zhong YT,Lu ZM,et al.Breaking Physical Barrier of Fibrotic Breast Cancer for Photodynamic Immunotherapy by Remodeling Tumor Extracellular Matrix and Reprogramming Cancer-Associated Fibroblasts.ACS Nano.2024;18(13):9713-9735. [25] Ben-Shmuel A,Joseph N,Sabag B,Barda-Saad M.Lymphocyte mechanotransduction:The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions.J Leukoc Biol.2019;105(6):1261-1273. [26] Cai F,Li Y,Liu H,Luo J.Single-cell and Spatial Transcriptomic Analyses Implicate Formation of the Immunosuppressive Microenvironment during Breast Tumor Progression.J Immunol.2024;213(9):1392-1401. [27] Xu Q,Chen S,Hu Y,Huang W.Landscape of Immune Microenvironment Under Immune Cell Infiltration Pattern in Breast Cancer.Front Immunol.12:711433.Published 2021 None. [28] Qian BZ,Ma RY.Immune Microenvironment in Breast Cancer Metastasis.Adv Exp Med Biol.1464:413-432. [29] Jia D,Wang P,Zheng S,et al.KRAS mutations promote PD-L1-mediated immune escape by ETV4 in lung adenocarcinoma.Transl Oncol.61:102525. [30] Licht JD,Bennett RL.Leveraging epigenetics to enhance the efficacy of immunotherapy.Clin Epigenetics.2021;13(1):115.Published 2021 May 17. [31] Naik A,Dalpatraj N,Thakur N.Global Histone H3 Lysine 4 Trimethylation(H3K4me3)Landscape Changes in Response to TGFβ.Epigenet Insights.14:25168657211051755.Published 2021 None. [32] Shi T,Zhang H,Chen Y.The m6A revolution:transforming tumor immunity and enhancing immunotherapy outcomes.Cell Biosci.2025;15(1):27.Published 2025 Feb 22. [33] Peng J,Liu W,Tian J,Shu Y,Zhao R,Wang Y.Non-coding RNAs as key regulators of epithelial-mesenchymal transition in breast cancer.Front Cell Dev Biol.13:1544310.Published 2025 None. [34] Vigorito E,Kohlhaas S,Lu D,Leyland R.miR-155:an ancient regulator of the immune system.Immunol Rev.2013;253(1):146-57. [35] Lan X,Zhang S,Yang L.Taurine up-regulated 1:A dual regulator in immune cell-mediated pathogenesis of human diseases.Prog Biophys Mol Biol.197:84-96. [36] Chen P,Zhang J,Wu S,et al.CircRNAs:a novel potential strategy to treat breast cancer.Front Immunol.16:1563655.Published 2025 None. [37] Smolle MA,Prinz F,Calin GA,Pichler M.Current concepts of non-coding RNA regulation of immune checkpoints in cancer.Mol Aspects Med.70:117-126. [38] Pan X,Li C,Feng J.The role of LncRNAs in tumor immunotherapy.Cancer Cell Int.2023;23(1):30.Published 2023 Feb 21. [39]Zhao X,Qiu Y,Chen J,et al.Non-Coding RNAs in Breast Cancer Radioresistance:Mechanisms,Functional Roles and Translational Potentials.Cell Prolif.:e70119.Published online Sep 14,2025. [40] Choi Y,Tan J,Lin D,Lee JS,Yuan Y.Immunotherapy in Breast Cancer:Beyond Immune Checkpoint Inhibitors.Int J Mol Sci.2025;26(8). Published 2025 Apr 21. [41] Ghahremani Dehbokri S,Alizadeh N,Isazadeh A,et al.CTLA-4:As an Immunosuppressive Immune Checkpoint in Breast Cancer.Curr Mol Med.2023;23(6):521-526. [42] Bruss C,Kellner K,Albert V,et al.Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD- 1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion.Cancers(Basel).2023;15(9).Published 2023 May 4. [43] Zong L,Mo S,Yu S,et al.Expression of the immune checkpoint VISTA in breast cancer.Cancer Immunol Immunother. 2020;69(8):1437-1446. [44] Vilgelm AE,Johnson DB,Richmond A.Combinatorial approach to cancer immunotherapy:strength in numbers.J Leukoc Biol. 2016; 100(2):275-90. [45] Torres ETR,Emens LA.Emerging combination immunotherapy strategies for breast cancer:dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies.Breast Cancer Res Treat.2022;191(2):291-302.
Full Text:
DOI