围手术期使用艾司氯胺酮对术后认知功能障碍影响的研究进展

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
王亦晨,陈仲海
文章摘要
术后认知功能障碍(Postoperative Cognitive Dysfunction,POCD)是外科手术后常见的中枢神经系统并发症,尤其好发于老年患者,严重影响患者的术后恢复质量和远期预后。艾司氯胺酮(Esketamine)作为氯胺酮的右旋异构体,具有更强的镇痛和更少的精神副作用潜力,近年来其在围术期神经保护方面的作用备受关注。本文旨在综述术中应用艾司氯胺酮对POCD影响的相关研究,探讨其潜在机制、临床应用现状、有效剂量、安全性以及未来研究方向,为临床预防和治疗POCD提供参考。
文章关键词
艾司氯胺酮;术后认知功能障碍;术中应用;神经保护;炎症反应
参考文献
[1] Rovnaghi CR,et al.Cerebrospinal fluid cytokines after pediatric surgery and their association with postoperative cognitive dysfunction. Anesthesiology.2014;120(2):398–409. [2] Zhang Y,et al.Inhibition of NF-κB attenuates cognitive dysfunction induced by surgery in aged rats.Neurol Res.2012;34(7):689–696. [3] Wu A,et al.Oxidative stress is involved in the pathophysiology of postoperative cognitive dysfunction in mice.Eur J Anaesthesiol. 2014;31(12):653–659. [4] Zhang ZH,et al.Role of oxidative stress in the development of postoperative cognitive dysfunction in mice after anesthesia.Behav Brain Res.2016;311:233–241. [5] Li M,et al.N-acetylcysteine alleviates cognitive dysfunction after surgery by suppressing oxidative stress and neuroinflammation.Brain Res Bull.2020;154:102–109. [6] Zhao D,et al.Sevoflurane impairs hippocampal long-term potentiation via activation of microglia in vivo and in vitro.Br J Anaesth. 2018;121(6):1276–1285. [7] Zhang Y,et al.Surgery-induced spatial memory deficits and synapse loss are ameliorated by minocycline.Neurosci Lett. 2013;549:144–149. [8] Tian X,et al.BDNF-TrkB signaling mediates the protective effect of treadmill exercise on cognitive function in a mouse model of postoperative cognitive dysfunction.Neurochem Int.2018;118:109–118. [9] Rudolph U,Antkowiak B.Molecular and neuronal substrates for general anaesthetics.Nat Rev Neurosci.2004;5(9):709–720. [10] Evered LA,et al.The role of biomarkers in delirium and cognitive decline following surgery.Front Med(Lausanne).2019;6:150. [11] Zhang Y,et al.Perioperative use of esketamine in elderly patients:effects on postoperative cognitive function.J Clin Anesth.2022;78:110663. [12] Li X,et al.Low-dose esketamine reduces the incidence of postoperative cognitive dysfunction after non-cardiac surgery:a randomized controlled trial.Anesth Analg.2021;132(5):1150–1158. [13] Wang J,et al.Anti-inflammatory effects of esketamine in a mouse model of postoperative cognitive dysfunction.Brain Res Bull. 2020;155:112–119. [14] Liu H,et al.Inhibition of NF-κB signaling contributes to the neuroprotective effects of esketamine in postoperative cognitive dysfunction.Neuropharmacology.2021;184:108418. [15] Chen Y,et al.Esketamine enhances BDNF expression and synaptic plasticity in the hippocampus of aged rats.Neuroscience. 2022;482:1–11. [16] Zhao R,et al.Preoperative low-dose esketamine attenuates postoperative cognitive decline in elderly patients undergoing abdominal surgery.J Neurosurg Anesthesiol.2023;35(2):149–157. [17] Sun W,et al.Effects of intraoperative esketamine on anesthetic requirements and postoperative cognitive outcomes:a prospective observational study.Acta Anaesthesiol Scand.2022;66(4):467–475. [18] Xu M,et al.Intranasal esketamine for acute postoperative pain management and cognitive recovery:a pilot study.J Pain Res. 2021;14:1537–1546. [19] Yang L,et al.Repeated low-dose esketamine administration improves long-term cognitive outcomes after major surgery:a preliminary study.Front Pharmacol.2023;14:1168833. [20] Terrando N,et al.Tumor necrosis factor-alpha triggers a pro-inflammatory cascade in the hippocampus after surgery.Neurosci Lett.2010;476(3):125–129. [21] Zhou Y,et al.Antidepressant-like effects of ketamine and its enantiomers:role ofα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor activation.Neuropsychopharmacology.2014;39(3):718–727. [22] Tian M,et al.Neuroprotective effects of(R)-ketamine against lipopolysaccharide-induced neuroinflammation and cognitive impairment.Neurosci Lett.2021;757:117970. [23] Liang G,et al.Isoflurane induces hippocampal cell death in neonatal mice through oxidative stress.Anesthesiology. 2010; 113(5):1056–1064. [24] Wu A,et al.Mechanisms of cognitive impairment induced by anesthesia and surgery:role of oxidative stress.Mediators Inflamm. 2019;2019:4805016. [25] Zhao Y,et al.Protective effects of ketamine against oxidative stress-induced neuronal injury in rat hippocampus.Neurochem Res. 2019;44(8):1885–1894. [26] Zhang Z,et al.Synaptic loss and cognitive dysfunction following surgery and anesthesia.Mol Neurobiol.2018;55(4):2911–2920. [27] Autry AE,et al.NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses.Nature.2011;475(7354):91–95. [28] Yang C,et al.Ketamine exerts antidepressant actions through the mTORC1 pathway.Neuropharmacology.2015;97:1–8. [29] Li N,et al.Role of BDNF in the antidepressant-like effect of(R)-ketamine in rodents.Psychopharmacology(Berl).2019;236(1):331–340. [30] Hashimoto K.Rapid-acting antidepressant ketamine and the current status of its enantiomer,(R)-ketamine(esketamine).Pharmacol Ther.2020;210:107493. [31] Moghaddam B,et al.Opposing roles for glutamate receptor subtypes in top-down control of stereotype in rats.Science. 1997; 278(5345):1293–1296. [32] Su TP,et al.The sigma-1 receptor as a novel pharmacologic target for the treatment of depression.Pharmacol Ther.2016;166:1–18. [33] Foster JA,Neufeld KA.Gut-brain axis:how the microbiome influences anxiety and depression.Trends Neurosci.2013;36(5):305–312. [34] Pariante CM,Lightman SL.The HPA axis in major depression:classical issues and new developments.Horm Behav.2008;53(2):199–200.
Full Text:
DOI