瘤周影像组学在乳腺癌诊疗中的研究现状及进展

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
赵义萱,华国勇
文章摘要
在精准医疗时代,乳腺癌的早期诊断、有效治疗和预后评估对患者的生存情况和生活质量具有重要意义。随着AI快速发展,影像组学广泛应用于乳腺癌的诊治和预后方面。然而,大部分研究只关注于肿瘤内部特征,只有少数文献关注并证实了瘤周影像组学同样可以提供有价值的信息。本文在综述国内外文献研究的基础上,总结了基于瘤周影像组学在乳腺癌诊疗中的应用进展,以期为后续研究提供有价值的参考。
文章关键词
肿瘤;瘤周;影像组学;乳腺肿瘤;文献综述
参考文献
[1] 邬昊,吕青.全球及中国乳腺癌的流行病学趋势及防控启示:2018–2022年《全球癌症统计报告》解读[J].中国普外基础与临床杂志,2024,31(07):796-802. [2] LI C,SONG L,YIN J.Intratumoral and Peritumoral Radiomics Based on Functional Parametric Maps from Breast DCE-MRI for Prediction of HER-2 and Ki-67 Status[J].J Magn Reson Imaging,2021,54(3):703-14. [3] WANG S,SUN Y,LI R,et al.Diagnostic performance of perilesional radiomics analysis of contrast-enhanced mammography for the differentiation of benign and malignant breast lesions[J].Eur Radiol,2022,32(1):639-49. [4] LEE S E,HAN K,KWAK J Y,et al.Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma[J].Sci Rep,2018,8(1):13546. [5] NIU S,JIANG W,ZHAO N,et al.Intra-and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J].J Cancer Res Clin Oncol,2022,148(1):97-106. [6] LI C,SONG L,YIN J.Intratumoral and Peritumoral Radiomics Based on Functional Parametric Maps from Breast DCE-MRI for Prediction of HER-2 and Ki-67 Status[J].J Magn Reson Imaging,2021,54(3):703-14. [7] SUN Q C,LIN X N,ZHAO Y S,et al.Deep learning vs radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images:don’t forget the peritumoral region[J].Front Oncol,2020,10:53. [8] DUAN Y Y,CHEN X B,LI W Y,et al.Multimodal radiomics and nomogram-based prediction of axillary lymph node metastasis in breast cancer:an analysis considering optimal peritumoral region[J].J Clin Ultrasound,2023,51(7):1231-1241. [9] WU Y M,MA Q Q,FAN L F,et al.An automated breast volume scanner-based intra-and peritumoral radiomics nomogram for the preoperative prediction of expression of ki-67 in breast malignancy[J].Acad Radiol,2024,31(1):93-103. [10] JIANG T,SONG J,WANG X,et al.Intratumoral and Peritumoral Analysis of Mammography,Tomosynthesis,and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer:a Radiomics-Based Study[J].Mol Imaging Biol,2022,24(4):550-9. [11] 徐海敏,戴瑶,马雨竹,等.MR T1WI瘤体及瘤周影像组学联合临床特征预测乳腺癌新辅助化疗疗效[J].中国医学影像技术,2023, 39(10):1520-1525.XU H M,DAI Y,MA Y Z,et al.MR T1WI intratumoral and peritumoral radiomics combined with clinical features for predicting effect of neoadjuvant chemotherapy for breast cancer[J].Chin J Med Imag Technol,2023,39(10):1520-1525. [12] HUANG X,MAI J,HUANG Y,et al.Radiomic nomogram for pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer:predictive value of staging contrast-enhanced CT[J].Clinical Breast Cancer,2021,21(4):e388-e401. [13] Koh J,Lee E,Han K,et al.Three-dimensional radiomics of triple-negative breast cancer:Prediction of systemic recurrence[J].Sci Rep, 2020,10(1):2976. [14] Nam KJ,Park H,Ko ES,et al.Radiomics signature on 3T dynamic contrast-enhanced magnetic resonance imaging for estrogen receptor-positive invasive breast cancers:Preliminary results for correlation with Oncotype DX recurrence scores[J].Medicine,2019, 98(23):e15871. [15] 陈小波,郭馨雨,于哲轩,等.不同联合方式的瘤内与瘤周影像组学特征对肺腺癌的诊断价值研究[J].中国医学计算机成像杂志, 2021,27(04):289-295. [16] 陈欢,梁明柱,雷益,等.含瘤周移行带影像组学模型预测肺腺癌病理分级[J].放射学实践,2020,35(4):478-483.CHEN H,LIANG M Z,LEI Y,et al.Prediction of pathological grading of lung adenocarcinoma by comparing peritumoral with intratumoral radiomics models[J]. Radiol Pract,2020,35(4):478-483.
Full Text:
DOI