作者
高旭坤,曹云太
文章摘要
结直肠癌的主要治疗方法是手术切除和新辅助放化疗。然而,对复发风险高的患者进行总体辅助化疗获益的评估是具有挑战性的。影像图片可以代表一种数据来源,可以通过使用基于计算机的自动化技术来分析,处理医学文件中数字成像和通信编码的数字信息,这种图像数值分析被命名为“影像组学”。影像组学可以从影像图片中提取定量特征,这些特征主要是人类肉眼所无法获取的特征,可以通过人工智能算法进一步分析。影像组学正在肿瘤学领域扩展,以了解肿瘤生物学或用于诊断、分期和预后、治疗反应的预测以及疾病监测。
文章关键词
结直肠癌;影像组学;人工智能;磁共振成像;计算机断层扫描;正电子发射断层与计算机断层显像
参考文献
[1] H.Sung,J.Ferlay,R.L.Siegel,M.Laversanne,I.Soerjomataram,A.Jemal,F.Bray,Global Cancer Statistics 2020:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,CA Cancer J Clin 71(2021)209-249.
[2] G.Argilés,J.Tabernero,R.Labianca,D.Hochhauser, R.Salazar,T.Iveson,P.Laurent-Puig,P.Quirke,T.Yoshino,J.Taieb, E.Martinelli,D.Arnold, Localised colon cancer:ESMO Clinical Practice Guidelines for diagnosis,treatment and follow-up,Ann.Oncol.31(2020)1291-1305.
[3] P.Lambin,E.Rios-Velazquez,R.Leijenaar,S.Carvalho,R.G.van Stiphout,P.Granton,C.M.Zegers, R.Gillies,R.Boellard,A.Dekker, H.J.Aerts, Radiomics:extracting more information from medical images using advanced feature analysis,Eur.J.Cancer 48(2012)441-446.
[4] J.E.van Timmeren,D.Cester,S.Tanadini-Lang,H.Alkadhi,B.Baessler,Radiomics in medical imaging-"how-to"guide and critical reflection, Insights Imaging 11(2020)91.
[5] M.Li,J.Zhang,Y.Dan,Y.Yao,W.Dai,G.Cai,G.Yang,T.Tong,A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer,J Transl Med 18(2020)46.
[6] L.Dercle,L.Lu,L.H.Schwartz,M.Qian,S.Tejpar,P.Eggleton,B.Zhao,H.Piessevaux,Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway,J.Natl.Cancer Inst.112(2020)902-912.
[7] J.B.Frøkjær,M.V.Lisitskaya,A.S.Jørgensen,L.R.Østergaard,T.M.Hansen,A.M.Drewes,S.S.Olesen,Pancreatic magnetic resonance imaging texture analysis in chronic pancreatitis:a feasibility and validation study,Abdom Radiol(NY)45(2020)1497-1506.
[8] N.Horvat,H.Veeraraghavan,C.Nahas,D.Bates,F.R.Ferreira,J.Zheng,M.Capanu,J.L.Fuqua 3rd,M.C.Fernandes,R.E.Sosa,V.S.Jayaprakasam, G.G.Cerri,S.C.Nahas,I.Petkovska,Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging:an external validation study,Abdom Radiol(NY)47(2022)2770-2782.
[9] I.Shahzadi,A.Zwanenburg,A.Lattermann,A.Linge,C.Baldus,J.C.Peeken,S.E.Combs,M.Diefenhardt,C.Rödel,S.Kirste,A.L.Grosu,M. Baumann, M. Krause,E.Troost,S.Löck,Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models,Sci Rep 12(2022)10192.
[10] X.Liu,Q.Yang,C.Zhang,J.Sun,K.He,Y.Xie,Y.Zhang,Y.Fu,H.Zhang,Multiregional-Based Magnetic Resonance Imaging Radiomics Combined With Clinical Data Improves Efficacy in Predicting Lymph Node Metastasis of Rectal Cancer,Front Oncol 10(2020)585767.
[11] X.Zhou,Y.Yi,Z.Liu,Z.Zhou,B.Lai,K.Sun,L.Li,L.Huang,Y.Feng,W.Cao,J.Tian,Radiomics-Based Preoperative Prediction of Lymph Node Status Following Neoadjuvant Therapy in Locally Advanced Rectal Cancer,Front Oncol 10(2020)604.
[12] L.Liu,Y.Liu,L.Xu,Z.Li,H.Lv,N.Dong,W.Li,Z.Yang,Z.Wang,E.Jin,Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer,J Magn Reson Imaging 45(2017)1798-1808.
[13] R.A.Bundschuh,J.Dinges,L.Neumann,M.Seyfried,N.Zsótér,L.Papp,R.Rosenberg,K.Becker,S.T.Astner,M.Henninger,K.Herrmann,S.I. Ziegler, M. Schwaiger, M.Essler,Textural Parameters of Tumor Heterogeneity in¹⁸F-FDG PET/CT for Therapy Response Assessment and Prognosis in Patients with Locally Advanced Rectal Cancer,J.Nucl.Med.55(2014)891-897.
Full Text:
DOI