作者
Yunusa Saatter,Ahmed Faruk Umar,Mahmud Yerima Iliyasu
文章摘要
目的:【摘 要】: 【摘 要】:榕树因其财产而闻名于世,志贺氏菌作为一种细菌也因其对传统药物的耐药性而闻名。因此,从无花果中合
成了银纳米颗粒。本研究旨在研究从无花果茎树皮水提取物合成的银纳米颗粒对多药耐药(MDR)志贺氏菌的抗志贺氏病
潜力,该志贺氏杆菌是从尼日利亚达马图鲁尤贝州专科医院的患者的临床标本中分离出来的。共对400份腹泻粪便进行了
筛选,以分离志贺氏菌,并使用标准方法确定其抗生素敏感性模式。采用绿色合成方法,利用无花果提取物的植物化学成
分合成银纳米颗粒。使用紫外可见光谱、FTIR和扫描电子显微镜(SEM)分析纳米颗粒的透射率、官能团、尺寸和形状,
并测试其对耐多药志贺氏菌分离株的抗菌活性。志贺氏菌恢复率与患者性别之间无显著差异(P<0.05)。0-10岁年龄组更
易感,40%(36),其次是30岁以上(21)。志贺氏菌还发现对环丙沙星(92%)、克拉维酸阿莫西林(87%)、头孢呋辛
(85%)、链霉素(83.5%)敏感,而最常见的耐药性表现为对纳利西酸(48%)和四环素(27%)。检测到的植物化学物
质包括皂苷、黄酮、生物碱、心苷和单宁。Uv-vis在460nm附近显示宽峰,FTIR显示烷烃羟基的C-H拉伸,SEM显示具有宽
范围形状和尺寸的纳米颗粒。与粗水提取物和AgNO3溶液对MDR志贺菌的活性相比,银纳米颗粒的抗志贺菌活性在10mm
和30mm之间的抑制区更高,表现出增强的活性。在这项研究中,儿童志贺菌病的高流行率表明,该地区的儿童需要改善
卫生状况,需要进行详细检查以治疗成人腹泻。环丙沙星、克拉维酸阿莫西林、纳利西酸只能在培养和敏感性结果占优势
的情况下使用。增强型传统医学因其潜力而应优先考虑。这项研究证明了绿合成梧桐病毒作为一种有效的抗志贺菌病来对
抗该疾病的全球负担的可行性。这是该地区首次对悬铃木茎皮水提取物对抗志贺菌的研究。
文章关键词
纳米颗粒;志贺菌病;腹泻病;达马图鲁;无花果;耐多药
参考文献
[1] Qu F., Bao C., Chen S., Cui E., Guo T., and Wang H. (2012) Genotypes and antimicrobial profiles of Shigella sonnei isolates fromdiarrheal patients circulating in Beijing between 2002 and 2007. Diagnostic Microbiology and Infectious Disease. 74 (2): 166–170.
[2] Aragon, T. J, Vugia D. J, Shallow S., Samuel M. C, Reingold, and A. (2007). Case-Control Study of Shigellosis in San Francisco: The Role of Sexual Transmission and HIV Infection. Clinical Infectious Diseases. 44: 327–34.
[3] Ryan, K. J and Ray C. G (2004). Ed. Sherris Medical Microbiology: An introduction to infectious disease. McGrawHill Medical Publishing Division New York. 4th Edition. P357-362.
[4] Kumar Surinda (2014). Essentials of Medical Microbiology. Jaypee Brothers Medical Publishers. New Delhi. 648p.
[5] Tam, F. C., Wang, M., and Dong, B., (2008). New rapid test for shigella fever: usefulness, cross-detection, and solution. Diagnostics Microbiology of Infectious Diseases. 62 (2): 142-150.
[6] Byarugaba, D. K. (2004). A view on antmicrobial resistance in developing countries and responsible risk factors. International Journal of Antimicrobial Agents 24: 105–110.
[7] Doore, S. M., Parent, K. N., Schrad, J. R., Dean, W. F., and Dover, J. A. (2018). Shigella phages isolated during a dysentery outbreak reveal uncommon structures and broad species diversity. Journal of Virologyjvi.asm.org.
[8] Saleh, B., Hammoud, R. and Al-Mariri, A. (2015). Antimicrobial activity of Ficus sycomorus L. (Moraceae) leaf and stem-bark extracts against multidrug resistant human pathogens. Herbal polonica. 61: 39-49. DOI: 10.1515/hepo-2015-0009.
[9] Calixto, J. B., Otuki, M. F., and Santos, A. R. (2003). Planta Medica. 69: 973–983, pMID: 14735432.
[10] Orwa, C. A., Mutua, Kindt R., Jamnadass R. and Anthony, S. (2009). Agroforestree Database: a tree reference and selection guide version 4.0 (http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp).
[11] Abubakar, U. S. (2017). Anticonvulsant activity of the methanol root bark extract of Ficus sycomorus linn. (Moraceae). Journal of Pharmacy and Pharmacognosy Research. 5 (1), 69 77. ISSN 0719-4250.
[12] Khatoon N., Mazumder J. A, and Sardar, M. (2017) Biotechnological Applications of Green Synthesized Silver Nanoparticles. Journal of Nanoscience Current Research 2: 107. doi: 10.4172/2572-0813.1000107.
[13] Zhang X., Liu Z., Shen W and Gurunathan S (2016). Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Science. 17 (1534): 1-34; doi: 10.3390/ijms17091534.
[14] Salem, W. M., Haridy, M., Sayed, W. F., and Hassan N. H. (2014). Antibacterial Activity of Silver nanoparticles Synthesized from Latex and Leaf of Ficus sycomorus. Industrial Crops and Products. Elsevier. 62: 228-234.
[15] Sharman, V. K., Yngard, R. A. and Lin, Y. (2009). Adv. Colloid SurfaceInterface. 145: 83. Shigella sonnei outbreak among men who have sex with men San Francisco, California, 2000–2001. MMWR Morb Mortal Wkly Rep 2001; 50: 922–6.
[16] Lateef, A. (2016). Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidantactivities and application as a paint additive. Journal of Taibah University for Science.
[17] Shitu, K. O. (2017). Application of gold nanoparticles for improved drug efficiency. Advanced Natural Science: Nanoscience and Nanotechnology. 8 035014.
[18] Abraham, J., Logeswari, P, and Silambarasan, S. (2016). Synthesis of silver nanoparticles using plants extract and analysis of
their antimicrobial property. Journal of Saudi Chemical Society. 3: 311-317.
[19] Sondi, I. and Salopek-Sondi, B. (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gramnegative bacteria. Journal of Colloid Interface Science 275: 177-182.
[20] Sivapalasingam S, Nelson, J. M, Joyce, K, Hoekstra, M, Angulo, F. J, and Mintz E. D. (2006). High prevalence of antimicrobrial
resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System.
Antimicrobial Agents Chemotheraphy 2006; 50: 49-54.
[21] Cheesbrough, M (2012). District laboratory practice in tropical countries, Microbiological tests. Chapter 7. In: Cheesbrough M,
Ed. pt 2. 2nd Ed. Cambridge: Cambridge University Press. pp: 9-267.
[22] Gaurav, A, Singh, S. P, Gill, J. P., Kumar, R., and Kumar, D., (2013). Isolation and identification of Shigella spp. from human
fecal samples collected from Pantnagar, Indian Veterinary World. 6 (7): 376-379, doi: 10.5455/vetworld.
[23] Banerjee P., Satapathy P., Mukhopahayay, M. and Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles
from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bio resources and
Bioprocessing. 1 (3): 1-9.
[24] CLSI. (2019). Performance Standard for Antimicrobial Susceptibility Testing. 29th Edition. CLSI Supplement M100. Wayne P. A.
Clinical Laboratory Standard institute.
[25] Amaldhas, T. P., (2012). Adv. Nat. Sci: nanosci. Nanotechnol. 3: 045006.
[26] Umadevi MS, Shalini S and Bondu MR (2012). Synthesis of Silvernanoparticle Using D. carota extract. Advances in Natural
Science: Nanoscience and Nanotechnology. 3 (2): 1-7.
[27] John J, Aravindakumar C. T and and Thomas S. (2018). Green Synthesis of Silver Nanoparticles using Phyto-Constituents of
Ficus auriculata Lour. Leaf Extract: mechanistic Approach. Saudi Arabia Journal of Biotechnology. 4: 103. 77, 257–262.
[28] Onuoha, S. C., Eluu and Okata, M. O. (2016). In-vitro Antimicrobial Resistance of Shigella and Salmonella species Recovered
from Abattoir effluent in Afikpo, South Eastern Nigeria. Int. J. Curr. Microbiol. App. Sci. 5 (4): 488-497. doi: http://dx.doi.
org/10.20546/ijcmas.2016.504.058.
[29] Saleh B and Al-Mariri A (2017). Phytochemical constitutes of Ficus sycomorus L. and inhibitory effect of their crude extracts
against bacterial pathogens. Journal of Natural Products. 10: 06-14.
[30] Zamanlou S., Rezaee M. A., Aghazadeh M., Ghotaslou R., Nave H. H., and Khalili Y. (2018). Genotypic Diversity of Multidrug
Resistant Shigella species from Iran. IC journal of Infection and Chemotheraphy. 50 (1): 29-37. www.icjournal.org.
[31] Iwalokun BA, Gbenle GO, Smith SI, Ogunledun A, Akinsinde KA, and Omonigbehin EA. (2001) Epidemiology of Shigellosis
in Lagos, Nigeria: Trends in antimicrobial resistance. Journal of Health Population and Nutrition. 19: 183-90.
[32] Stoll BJ, Glass RI, Huq MI, Kuan MV, Bann H. and Holt J. Epidemiologic and clinical features of patients infected with Shigella
who attached a diarrhoea disease hospital in Bangladesh. J Infect Dis. 1982; 88.177-83.
[33] Andualem B, Kassu A, Diro E, Moges F, and Gedefaw M.(2006). The prevalence and antimicrobial responses of Shigella
Isolates in HIV-1 infected and uninfected adult diarrhea patients in north west Ethiopia. Ethiop. J. Health Dev. 20 (2): 99-105.
[34] Ngoshe I. Y., Denue B. A., Bello S. A., Akawu C. B and Gashua W. (2017). Prevalence and antimicrobial susceptibility of
Shigella species isolates from diarrheal stool of patients in a tertiary health facility in northeastern Nigeria. SubSaharan African
Journal of Medicine; 4: 96-101.
[35] Mas’ud Abdullahi. (2017). Shigellosis and Socio-Demography of hospitalized Patients in Kano, North-West, Nigeria.
International Journal of Pharmaceutical Science Invention. 6 (3). PP. 31-37.
[36] Abubakar, U. S, DanMalam, U. H., Ahmed, A., Abdullahi S., Abba A., and Rukayya N. (2016). Gc-Ms Analysis of Ethyl Acetate
Extract of Ficus sycomorus Root Linn. (Moraceae). Bayero Journal of Pure Applied Sciences, 9 (2): 30–34.
[37] Ahmad A. S., Dahiru, A., Muhammad, A. T., Idriss, H. and Gautam K. (2016). Phytochemical Screening and Antimicrobial
Activity of Ficus sycomorus Extracts of the Stem Bark and Leaves on Some Pathogenic Microorganisms. American Chemical
Science Journal. 13 (3): 1-5.
[38] Oluwasesan M. B., Agbende M. Z. and Jacob G. A. (2013). Comparative studies of phytochemical screening of Ficus sycomorus
linn stem bark extract and Piliostigma thonningii roots extract. Asian Journal of Plant Science Research, 3 (6): 69-73.
[39] Daniel D. and Dluya T. (2016). In vitro Biochemical Assessments of Methanol Stem Bark Extracts of Ficus sycomorus Plant.
225Jordan Journal of Biological Sciences. 9 (1);63–68.
[40] Garba, S. H, Prasad, J. and Sandabe, U. K. (2007). Hepatoprotective Effect of the Aqueous Root-Back Extract of Ficus
sycomorus (Linn) on Carbon Tetrachloride induced Hepathotoxicity in Rats. Journal of Biological Sciences. 7 (2): 276-281.
[41] Mudi SY, Muhammad A, Musa J and Datti Y (2015). Phytochemical Screening and Antimicrobial activity of leaves and fruits of F.
sycomorus. Chemsearch Journal. 6 (1): 1-7.
[42] Kesba HH and El-Beltagi HS (2012). Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to
nematode infection. Asian Pacific Journal of Tropical Biomedicine 2 (4): 287-293.
[43] El-Beltagi S. H., Mohammed H. T., Abdelazeem, A. S.,Youssef, R., and Safwat, G. (2019). GC-MS Analysis, Antioxidant,
Antimicrobial and Anticancer Activities of Extracts from Ficus sycomorus Fruits and Leaves. Notulae Botanicae Horti Agrobotanici
Cluj-Napoca. 47 (2): 493-505.
[44] Aroca RF, Alvarez-Puebla, Pieczonka N, Sanchez-Cortez S, and Garcia-Ramos JV (2005). Surface Enhanced Raman Scattering
on colloida nanostructure. Advanced Colloid interface Science. 116: 45-61.
[45] Saad A. M, Abdulameen H. A., Ghareeb, M. A., and Hamed M. H. (2017). In vitro antioxidant, antimicrobial and cytotoxic
activities and green biosynthesis of silver and gold nanoparticles using Callistemon citrinus leaf extract. Journal of Applied
Pharmaceutical Science 7 (06); 2017: 141-149.
[46] Lateef, A., Adelere, I. A., and Gueguim-Kana, E. B. (2015). Bacillus safensis LAU. a new source of keratinase and its multifunctional biocatalytic applications. Biotechnology and Biotechnological Equipment. 29: 54–63.
[47] Adelere I. A., Lateef, A, Aboyeji, O. O., Abdusalam, R., Abba M. U., and Bala, D. D. (2017). Biosynthesis of Silver
Nanoparticles Using Aqueous Extract of Buchholzia Coriacea (Wonderful Kola) Seeds and their Antimicrobial Activities. Annals.
Food Science and Technology. 18 (4): 671-679.
[48] Mahmoud, W, Elazzazy A. M and Danial E. N (2017). In vitro evaluation of antioxidant, biochemical and antimicrobial
properties of biosynthesized silver nanoparticles against multidrug-resistant bacterial pathogens. Biotechnology & Biotechnological
Equipment. 31: 2, 373-379.
[49] Mmola M., Roes-Hill, M. L., Durell, K., and Bolton, J. J. (2016). Enhanced Antimicrobial and Anticancer Activity of Silver and
Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts. Molecules (21) 1633. 1–20.
[50] Bhalerao BM and Borkar PA (2017). Plant as a natural source for synthesis of silver nanoparticles. International Journal of
Chemical Studies. 5 (6): 98-104.
[51] Premanand, G., Shanmugam, N., Kannadasan, N., Sathishkumar, K. and Viruthagi, G. (2016). Nelumbo nucifera leaf extract
mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens. Applied Nanoscience. 6:
409-415.
[52] Augustine R., Kalarikkal N, and Thomas, S. (2014). A facile and rapid method for the black pepper leaf mediated green synthesis
of silver nanoparticles and the antimicrobial study. Applied Nanoscience, 4: 809–818.
[53] Kotakadi V. S., Gaddam S. A. and Venkata S. K. (2014). New generation of bactericidal silver nanoparticles against different
antibiotic resistant Escherichia coli strains. Journal of Applications of Nanoscience. DOI 10.1007/s13204-014-0381-7.1–9.
Full Text:
DOI